%PDF- %PDF-
Direktori : /usr/share/liblouisutdml/lbu_files/ |
Current File : //usr/share/liblouisutdml/lbu_files/wiskunde.sem |
# # Copyright (C) 2010 DocArch <http://www.docarch.be>. # # This file is part of liblouis. # # liblouis is free software: you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 2.1 of the # License, or (at your option) any later version. # # liblouis is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with liblouis. If not, see # <http://www.gnu.org/licenses/>. # # ---------------------------------------------------------------------------------------------- # # Flemish Braille Math Code (a.k.a. Woluwe code) # Created and maintained by Bert Frees <bertfrees@gmail.com> # See also: « Handleiding Braillesymbolen Wiskunde » # (Gilbert Notaert, Marc Suij en Emmanuel Vandekerkhove, G.on Woluwe, 1984) # # ---------------------------------------------------------------------------------------------- namespaces math=http://www.w3.org/1998/Math/MathML math math generic semantics generic mstyle generic mi \es generic mn \es generic mo \es generic mtext \et,\et generic mrow generic mfrac \ef,\ed,\ex generic &xpath(//math:mfrac[descendant::math:mfrac]) \ef,\ed\ed,\ex #generic &xpath(//math:mfenced[@open='(' and @close=')'][not(child::math:mtable)]) (,\*) generic &xpath(//math:mfenced[@open='' and @close=''][not(child::math:mtable)]) (,\*) generic &xpath(//math:mfenced[@open='' and @close=']'][not(child::math:mtable)]) (,\*] generic &xpath(//math:mfenced[@open='[' and @close=''][not(child::math:mtable)]) [,\*) generic &xpath(//math:mfenced[@open='[' and @close=']'][not(child::math:mtable)]) [,\*] generic &xpath(//math:mfenced[@open='[' and @close='['][not(child::math:mtable)]) [,\*[ generic &xpath(//math:mfenced[@open=']' and @close=']'][not(child::math:mtable)]) ],\*] generic &xpath(//math:mfenced[@open=']' and @close='['][not(child::math:mtable)]) ],\*[ generic &xpath(//math:mfenced[@open='∣' and @close='∣'][not(child::math:mtable)]) @1456,\*@1456 generic mtable skip &xpath(//math:mtext[ancestor::math:mfrac or ancestor::math:mtable]) softreturn mtr @56@1256 softreturn &xpath(//*[not(self::math:mfenced)]/math:mtable/math:mtr[position()=1]) @123456 generic &xpath(//*[not(self::math:mfenced)]/math:mtable/math:mtr[position()=last()]) @56@1256,\*\ex generic mtd \s generic &xpath(//math:mtd[position()=1]) #softreturn &xpath(//math:mfenced[@open='(']/math:mtable/math:mtr[position()=1]) (@123456 softreturn &xpath(//math:mfenced[@open='']/math:mtable/math:mtr[position()=1]) (@123456 softreturn &xpath(//math:mfenced[@open='[']/math:mtable/math:mtr[position()=1]) [@123456 softreturn &xpath(//math:mfenced[@open=']']/math:mtable/math:mtr[position()=1]) ]@123456 softreturn &xpath(//math:mfenced[@open='∣']/math:mtable/math:mtr[position()=1]) @1456@123456 #generic &xpath(//math:mfenced[@close=')']/math:mtable/math:mtr[position()=last()]) @56@1256,\*\ex) generic &xpath(//math:mfenced[@close='']/math:mtable/math:mtr[position()=last()]) @56@1256,\*\ex) generic &xpath(//math:mfenced[@close=']']/math:mtable/math:mtr[position()=last()]) @56@1256,\*\ex] generic &xpath(//math:mfenced[@close='[']/math:mtable/math:mtr[position()=last()]) @56@1256,\*\ex[ generic &xpath(//math:mfenced[@close='∣']/math:mtable/math:mtr[position()=last()]) @56@1256,\*\ex@1456 generic msub ,\ei\e_r,\ex generic msup ,\ei\e\x280cr,\ex generic msubsup ,\ei\e_r,\ex\ei\e\x280cr,\ex skip munder skip mover skip munderover generic &xpath(//math:munder [child::*[1][ string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏' or string()='lim']]) ,\ei\e_r,\ex generic &xpath(//math:mover [child::*[1][ string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏']]) ,\ei\e\x280cr,\ex generic &xpath(//math:munderover[child::*[1][ string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏']]) ,\ei\e_r,\ex\ei\e\x280cr,\ex generic &xpath(//math:munder [child::*[1][not(string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏') and string-length()=1]]) ,\ei\e_c,\ex generic &xpath(//math:munderover[child::*[1][not(string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏') and string-length()=1]]) ,\ei\e_c,\ex\ei\e\x280cc,\ex generic &xpath(//math:mover [child::*[1][not(string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏') and string-length()=1] and child::*[2][string()='⃗' or string()='→']]) @45@1246 skip &xpath(//math:mover [child::*[1][not(string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏') and string-length()=1]] / child::*[2][string()='⃗' or string()='→']) generic &xpath(//math:mover [child::*[1][not(string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏') and string-length()=1] and not(child::*[2][string()='⃗' or string()='→'])]) ,\ei\e\x280cc,\ex generic &xpath(//math:mover[child::*[1][string-length()>1] and child::*[2][string()='¯']]) @456@25,\ex generic &xpath(//math:mover[child::*[1][string-length()>1] and child::*[2][string()='̂']]) @456@126,\ex generic &xpath(//math:mover[child::*[1][string-length()>1] and child::*[2][string()='̃']]) @456@26,\ex generic &xpath(//math:mover[child::*[1][string-length()>1] and child::*[2][string()='⃗']]) @456@25@2,\ex generic &xpath(//math:mover[child::*[1][string-length()>1] and child::*[2][string()='→']]) @456@25@2,\ex generic &xpath(//math:mover[child::*[1][string-length()>1] and child::*[2][string()='←']]) @456@2@25,\ex skip &xpath(//math:mover[child::*[1][string-length()>1]] / child::*[2][string()='¯']) skip &xpath(//math:mover[child::*[1][string-length()>1]] / child::*[2][string()='̂']) skip &xpath(//math:mover[child::*[1][string-length()>1]] / child::*[2][string()='̃']) skip &xpath(//math:mover[child::*[1][string-length()>1]] / child::*[2][string()='⃗']) skip &xpath(//math:mover[child::*[1][string-length()>1]] / child::*[2][string()='→']) skip &xpath(//math:mover[child::*[1][string-length()>1]] / child::*[2][string()='←']) generic none \en generic mprescripts skip mmultiscripts generic &xpath(//math:mmultiscripts[not(child::math:mprescripts) and (count(child::*)=3)]) ,\ei\e_r,\ex\ei\e\x280cr,\ex reverse &xpath(//math:mmultiscripts[ (child::math:mprescripts) and (count(child::*)=4)]) \ei\e\x280cl,\ex\ei\e_l,\ex generic msqrt \ev,\*\ex generic mroot \ev,\*\ex reverse &xpath(//math:mroot[count(child::*)=2]) \ei\e\x280cl,\ex\ev,\ex # ---------------------------------------------------------------------------------------------- skip abs skip and skip annotation skip annotation-xml skip apply skip approx skip arccos skip arccosh skip arccot skip arccoth skip arccsc skip arccsch skip arcsec skip arcsech skip arcsin skip arcsinh skip arctan skip arctanh skip arg skip bvar skip card skip cartesianproduct skip ceiling skip ci skip cn skip codomain skip complexes skip compose skip condition skip conjugate skip cos skip cosh skip cot skip coth skip csc skip csch skip csymbol skip curl skip declare skip degree skip determinant skip diff skip divergence skip divide skip domain skip domainofapplication skip emptyset skip eq skip equivalent skip eulergamma skip exists skip exp skip exponentiale skip factorial skip factorof skip false skip floor skip fn skip forall skip gcd skip geq skip grad skip gt skip ident skip image skip imaginary skip imaginaryi skip implies skip in skip infinity skip int skip integers skip intersect skip interval skip inverse skip lambda skip laplacian skip lcm skip leq skip limit skip list skip ln skip log skip logbase skip lowlimit skip lt skip maction skip maligngroup skip malignmark skip matrix skip matrixrow skip max skip mean skip median skip menclose skip merror skip mglyph skip min skip minus skip mlabeledtr skip mode skip moment skip momentabout skip mpadded skip mphantom skip ms skip mspace skip naturalnumbers skip neq skip not skip notanumber skip notin skip notprsubset skip notsubset skip or skip otherwise skip outerproduct skip partialdiff skip pi skip piece skip piecewise skip plus skip power skip primes skip product skip prsubset skip quotient skip rationals skip real skip reals skip reln skip rem skip root skip scalarproduct skip sdev skip sec skip sech skip selector skip sep skip set skip setdiff skip sin skip sinh skip subset skip sum skip tan skip tanh skip tendsto skip times skip transpose skip true skip union skip uplimit skip variance skip vector skip vectorproduct skip xor # ----------------------------------------------------------------------------------------------