%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /usr/share/liblouisutdml/lbu_files/
Upload File :
Create Path :
Current File : //usr/share/liblouisutdml/lbu_files/wiskunde.sem

#
#  Copyright (C) 2010 DocArch <http://www.docarch.be>.
#
#  This file is part of liblouis.
#
#  liblouis is free software: you can redistribute it and/or modify it
#  under the terms of the GNU Lesser General Public License as
#  published by the Free Software Foundation, either version 2.1 of the
#  License, or (at your option) any later version.
#
#  liblouis is distributed in the hope that it will be useful, but
#  WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
#  Lesser General Public License for more details.
#
#  You should have received a copy of the GNU Lesser General Public
#  License along with liblouis. If not, see
#  <http://www.gnu.org/licenses/>.
#
# ----------------------------------------------------------------------------------------------
#
#  Flemish Braille Math Code (a.k.a. Woluwe code)
#     Created and maintained by Bert Frees <bertfrees@gmail.com>
#     See also: « Handleiding Braillesymbolen Wiskunde »
#              (Gilbert Notaert, Marc Suij en Emmanuel Vandekerkhove, G.on Woluwe, 1984)
#
# ----------------------------------------------------------------------------------------------

namespaces math=http://www.w3.org/1998/Math/MathML

math         math
generic      semantics
generic      mstyle

generic      mi \es
generic      mn \es
generic      mo \es
generic      mtext \et,\et
generic      mrow
generic      mfrac \ef,\ed,\ex
generic      &xpath(//math:mfrac[descendant::math:mfrac]) \ef,\ed\ed,\ex

#generic      &xpath(//math:mfenced[@open='(' and @close=')'][not(child::math:mtable)])  (,\*)
generic      &xpath(//math:mfenced[@open='' and @close=''][not(child::math:mtable)])  (,\*)
generic      &xpath(//math:mfenced[@open='' and @close=']'][not(child::math:mtable)])  (,\*]
generic      &xpath(//math:mfenced[@open='[' and @close=''][not(child::math:mtable)])  [,\*)
generic      &xpath(//math:mfenced[@open='[' and @close=']'][not(child::math:mtable)])  [,\*]
generic      &xpath(//math:mfenced[@open='[' and @close='['][not(child::math:mtable)])  [,\*[
generic      &xpath(//math:mfenced[@open=']' and @close=']'][not(child::math:mtable)])  ],\*]
generic      &xpath(//math:mfenced[@open=']' and @close='['][not(child::math:mtable)])  ],\*[
generic      &xpath(//math:mfenced[@open='∣' and @close='∣'][not(child::math:mtable)])  @1456,\*@1456

generic      mtable
skip         &xpath(//math:mtext[ancestor::math:mfrac or ancestor::math:mtable])
softreturn   mtr @56@1256
softreturn   &xpath(//*[not(self::math:mfenced)]/math:mtable/math:mtr[position()=1])       @123456
generic      &xpath(//*[not(self::math:mfenced)]/math:mtable/math:mtr[position()=last()])  @56@1256,\*\ex
generic      mtd \s
generic      &xpath(//math:mtd[position()=1])

#softreturn   &xpath(//math:mfenced[@open='(']/math:mtable/math:mtr[position()=1])   (@123456
softreturn   &xpath(//math:mfenced[@open='']/math:mtable/math:mtr[position()=1])   (@123456
softreturn   &xpath(//math:mfenced[@open='[']/math:mtable/math:mtr[position()=1])   [@123456
softreturn   &xpath(//math:mfenced[@open=']']/math:mtable/math:mtr[position()=1])   ]@123456
softreturn   &xpath(//math:mfenced[@open='∣']/math:mtable/math:mtr[position()=1])   @1456@123456

#generic      &xpath(//math:mfenced[@close=')']/math:mtable/math:mtr[position()=last()])   @56@1256,\*\ex)
generic      &xpath(//math:mfenced[@close='']/math:mtable/math:mtr[position()=last()])   @56@1256,\*\ex)
generic      &xpath(//math:mfenced[@close=']']/math:mtable/math:mtr[position()=last()])   @56@1256,\*\ex]
generic      &xpath(//math:mfenced[@close='[']/math:mtable/math:mtr[position()=last()])   @56@1256,\*\ex[
generic      &xpath(//math:mfenced[@close='∣']/math:mtable/math:mtr[position()=last()])   @56@1256,\*\ex@1456

generic      msub       ,\ei\e_r,\ex
generic      msup       ,\ei\e\x280cr,\ex
generic      msubsup    ,\ei\e_r,\ex\ei\e\x280cr,\ex
skip         munder
skip         mover
skip         munderover

generic      &xpath(//math:munder    [child::*[1][    string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏' or string()='lim']])   ,\ei\e_r,\ex
generic      &xpath(//math:mover     [child::*[1][    string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏']])                     ,\ei\e\x280cr,\ex
generic      &xpath(//math:munderover[child::*[1][    string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏']])                     ,\ei\e_r,\ex\ei\e\x280cr,\ex

generic      &xpath(//math:munder    [child::*[1][not(string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏') and string-length()=1]])   ,\ei\e_c,\ex
generic      &xpath(//math:munderover[child::*[1][not(string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏') and string-length()=1]])   ,\ei\e_c,\ex\ei\e\x280cc,\ex

generic      &xpath(//math:mover     [child::*[1][not(string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏') and string-length()=1] and     child::*[2][string()='⃗' or string()='→']])   @45@1246
skip         &xpath(//math:mover     [child::*[1][not(string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏') and string-length()=1]] /      child::*[2][string()='⃗' or string()='→'])
generic      &xpath(//math:mover     [child::*[1][not(string()='∫' or string()='∬' or string()='∭' or string()='∑' or string()='∏') and string-length()=1] and not(child::*[2][string()='⃗' or string()='→'])])  ,\ei\e\x280cc,\ex

generic      &xpath(//math:mover[child::*[1][string-length()>1] and child::*[2][string()='¯']])  @456@25,\ex
generic      &xpath(//math:mover[child::*[1][string-length()>1] and child::*[2][string()='̂']])  @456@126,\ex
generic      &xpath(//math:mover[child::*[1][string-length()>1] and child::*[2][string()='̃']])   @456@26,\ex
generic      &xpath(//math:mover[child::*[1][string-length()>1] and child::*[2][string()='⃗']])   @456@25@2,\ex
generic      &xpath(//math:mover[child::*[1][string-length()>1] and child::*[2][string()='→']])  @456@25@2,\ex
generic      &xpath(//math:mover[child::*[1][string-length()>1] and child::*[2][string()='←']])  @456@2@25,\ex

skip         &xpath(//math:mover[child::*[1][string-length()>1]] /  child::*[2][string()='¯'])
skip         &xpath(//math:mover[child::*[1][string-length()>1]] /  child::*[2][string()='̂'])
skip         &xpath(//math:mover[child::*[1][string-length()>1]] /  child::*[2][string()='̃'])
skip         &xpath(//math:mover[child::*[1][string-length()>1]] /  child::*[2][string()='⃗']) 
skip         &xpath(//math:mover[child::*[1][string-length()>1]] /  child::*[2][string()='→'])
skip         &xpath(//math:mover[child::*[1][string-length()>1]] /  child::*[2][string()='←'])

generic      none \en
generic      mprescripts
skip         mmultiscripts
generic      &xpath(//math:mmultiscripts[not(child::math:mprescripts) and (count(child::*)=3)])  ,\ei\e_r,\ex\ei\e\x280cr,\ex
reverse      &xpath(//math:mmultiscripts[   (child::math:mprescripts) and (count(child::*)=4)])   \ei\e\x280cl,\ex\ei\e_l,\ex

generic      msqrt                                    \ev,\*\ex
generic      mroot                                    \ev,\*\ex
reverse      &xpath(//math:mroot[count(child::*)=2])  \ei\e\x280cl,\ex\ev,\ex

# ----------------------------------------------------------------------------------------------

skip abs
skip and
skip annotation
skip annotation-xml
skip apply
skip approx
skip arccos
skip arccosh
skip arccot
skip arccoth
skip arccsc
skip arccsch
skip arcsec
skip arcsech
skip arcsin
skip arcsinh
skip arctan
skip arctanh
skip arg
skip bvar
skip card
skip cartesianproduct
skip ceiling
skip ci
skip cn
skip codomain
skip complexes
skip compose
skip condition
skip conjugate
skip cos
skip cosh
skip cot
skip coth
skip csc
skip csch
skip csymbol
skip curl
skip declare
skip degree
skip determinant
skip diff
skip divergence
skip divide
skip domain
skip domainofapplication
skip emptyset
skip eq
skip equivalent
skip eulergamma
skip exists
skip exp
skip exponentiale
skip factorial
skip factorof
skip false
skip floor
skip fn
skip forall
skip gcd
skip geq
skip grad
skip gt
skip ident
skip image
skip imaginary
skip imaginaryi
skip implies
skip in
skip infinity
skip int
skip integers
skip intersect
skip interval
skip inverse
skip lambda
skip laplacian
skip lcm
skip leq
skip limit
skip list
skip ln
skip log
skip logbase
skip lowlimit
skip lt
skip maction
skip maligngroup
skip malignmark
skip matrix
skip matrixrow
skip max
skip mean
skip median
skip menclose
skip merror
skip mglyph
skip min
skip minus
skip mlabeledtr
skip mode
skip moment
skip momentabout
skip mpadded
skip mphantom
skip ms
skip mspace
skip naturalnumbers
skip neq
skip not
skip notanumber
skip notin
skip notprsubset
skip notsubset
skip or
skip otherwise
skip outerproduct
skip partialdiff
skip pi
skip piece
skip piecewise
skip plus
skip power
skip primes
skip product
skip prsubset
skip quotient
skip rationals
skip real
skip reals
skip reln
skip rem
skip root
skip scalarproduct
skip sdev
skip sec
skip sech
skip selector
skip sep
skip set
skip setdiff
skip sin
skip sinh
skip subset
skip sum
skip tan
skip tanh
skip tendsto
skip times
skip transpose
skip true
skip union
skip uplimit
skip variance
skip vector
skip vectorproduct
skip xor

# ----------------------------------------------------------------------------------------------

Zerion Mini Shell 1.0