%PDF- %PDF-
Direktori : /usr/share/liblouis/tables/ |
Current File : //usr/share/liblouis/tables/ru-brf.dis |
# Copyright (C) 2021 Andrey Yakuboy <braille@yakuboy.ru> # # This file is part of liblouis. # # liblouis is free software: you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 2.1 of the # License, or (at your option) any later version. # # liblouis is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with liblouis. If not, see # <http://www.gnu.org/licenses/>. # This table maps the Cyrillic dot patterns that are defined in # ru-litbrl.ctb and other Cyrillic tables with dots 7 and 9 to BrailleAscii. # These dots are simply dropped. # Note that ru-letters.dis maps Latin to lowercase letters and # Cyrillic to uppercase letters. But in BrailleAscii this distinction can # not be made because the Latin and Cyrillic alphabet are translated # to the same dot patterns. include en-us-brf.dis display A 179 display B 1279 display C 1479 display D 14579 display E 1579 display F 12479 display G 124579 display H 12579 display I 2479 display J 24579 display K 1379 display L 12379 display M 13479 display N 134579 display O 13579 display P 123479 display Q 1234579 display R 123579 display S 23479 display T 234579 display U 13679 display W 245679 display X 134679 display Z 135679 display * 1679 display & 1234679 display : 15679 display ( 1235679 display ! 234679 display ) 2345679 display [ 24679 display \\ 125679 display $ 124679 display A 19 display B 129 display C 149 display D 1459 display E 159 display F 1249 display G 12459 display H 1259 display I 249 display J 2459 display K 139 display L 1239 display M 1349 display N 13459 display O 1359 display P 12349 display Q 123459 display R 12359 display S 2349 display T 23459 display U 1369 display W 24569 display X 13469 display Z 13569 display * 169 display & 123469 display : 1569 display ( 123569 display ! 23469 display ) 234569 display [ 2469 display \\ 12569 display $ 12469 display < 12679 display > 34579 display Y 1345679 display ? 145679 display ] 1245679 display % 14679 display / 3479 display + 34679 display V 123679 display < 1269 display > 3459 display Y 134569 display ? 14569 display ] 124569 display % 1469 display / 349 display + 3469 display V 12369