%PDF- %PDF-
Direktori : /usr/share/bpfcc-tools/ |
Current File : //usr/share/bpfcc-tools/deadlock.c |
/* * deadlock.c Detects potential deadlocks in a running process. * For Linux, uses BCC, eBPF. See .py file. * * Copyright 2017 Facebook, Inc. * Licensed under the Apache License, Version 2.0 (the "License") * * 1-Feb-2016 Kenny Yu Created this. */ #include <linux/sched.h> #include <uapi/linux/ptrace.h> // Maximum number of mutexes a single thread can hold at once. // If the number is too big, the unrolled loops wil cause the stack // to be too big, and the bpf verifier will fail. #define MAX_HELD_MUTEXES 16 // Info about held mutexes. `mutex` will be 0 if not held. struct held_mutex_t { u64 mutex; u64 stack_id; }; // List of mutexes that a thread is holding. Whenever we loop over this array, // we need to force the compiler to unroll the loop, otherwise the bcc verifier // will fail because the loop will create a backwards edge. struct thread_to_held_mutex_leaf_t { struct held_mutex_t held_mutexes[MAX_HELD_MUTEXES]; }; // Map of thread ID -> array of (mutex addresses, stack id) BPF_HASH(thread_to_held_mutexes, u32, struct thread_to_held_mutex_leaf_t, MAX_THREADS); // Key type for edges. Represents an edge from mutex1 => mutex2. struct edges_key_t { u64 mutex1; u64 mutex2; }; // Leaf type for edges. Holds information about where each mutex was acquired. struct edges_leaf_t { u64 mutex1_stack_id; u64 mutex2_stack_id; u32 thread_pid; char comm[TASK_COMM_LEN]; }; // Represents all edges currently in the mutex wait graph. BPF_HASH(edges, struct edges_key_t, struct edges_leaf_t, MAX_EDGES); // Info about parent thread when a child thread is created. struct thread_created_leaf_t { u64 stack_id; u32 parent_pid; char comm[TASK_COMM_LEN]; }; // Map of child thread pid -> info about parent thread. BPF_HASH(thread_to_parent, u32, struct thread_created_leaf_t); // Stack traces when threads are created and when mutexes are locked/unlocked. BPF_STACK_TRACE(stack_traces, MAX_TRACES); // The first argument to the user space function we are tracing // is a pointer to the mutex M held by thread T. // // For all mutexes N held by mutexes_held[T] // add edge N => M (held by T) // mutexes_held[T].add(M) int trace_mutex_acquire(struct pt_regs *ctx, void *mutex_addr) { // Higher 32 bits is process ID, Lower 32 bits is thread ID u32 pid = bpf_get_current_pid_tgid(); u64 mutex = (u64)mutex_addr; struct thread_to_held_mutex_leaf_t empty_leaf = {}; struct thread_to_held_mutex_leaf_t *leaf = thread_to_held_mutexes.lookup_or_try_init(&pid, &empty_leaf); if (!leaf) { bpf_trace_printk( "could not add thread_to_held_mutex key, thread: %d, mutex: %p\n", pid, mutex); return 1; // Could not insert, no more memory } // Recursive mutexes lock the same mutex multiple times. We cannot tell if // the mutex is recursive after the mutex is already created. To avoid noisy // reports, disallow self edges. Do one pass to check if we are already // holding the mutex, and if we are, do nothing. #pragma unroll for (int i = 0; i < MAX_HELD_MUTEXES; ++i) { if (leaf->held_mutexes[i].mutex == mutex) { return 1; // Disallow self edges } } u64 stack_id = stack_traces.get_stackid(ctx, BPF_F_USER_STACK); int added_mutex = 0; #pragma unroll for (int i = 0; i < MAX_HELD_MUTEXES; ++i) { // If this is a free slot, see if we can insert. if (!leaf->held_mutexes[i].mutex) { if (!added_mutex) { leaf->held_mutexes[i].mutex = mutex; leaf->held_mutexes[i].stack_id = stack_id; added_mutex = 1; } continue; // Nothing to do for a free slot } // Add edges from held mutex => current mutex struct edges_key_t edge_key = {}; edge_key.mutex1 = leaf->held_mutexes[i].mutex; edge_key.mutex2 = mutex; struct edges_leaf_t edge_leaf = {}; edge_leaf.mutex1_stack_id = leaf->held_mutexes[i].stack_id; edge_leaf.mutex2_stack_id = stack_id; edge_leaf.thread_pid = pid; bpf_get_current_comm(&edge_leaf.comm, sizeof(edge_leaf.comm)); // Returns non-zero on error int result = edges.update(&edge_key, &edge_leaf); if (result) { bpf_trace_printk("could not add edge key %p, %p, error: %d\n", edge_key.mutex1, edge_key.mutex2, result); continue; // Could not insert, no more memory } } // There were no free slots for this mutex. if (!added_mutex) { bpf_trace_printk("could not add mutex %p, added_mutex: %d\n", mutex, added_mutex); return 1; } return 0; } // The first argument to the user space function we are tracing // is a pointer to the mutex M held by thread T. // // mutexes_held[T].remove(M) int trace_mutex_release(struct pt_regs *ctx, void *mutex_addr) { // Higher 32 bits is process ID, Lower 32 bits is thread ID u32 pid = bpf_get_current_pid_tgid(); u64 mutex = (u64)mutex_addr; struct thread_to_held_mutex_leaf_t *leaf = thread_to_held_mutexes.lookup(&pid); if (!leaf) { // If the leaf does not exist for the pid, then it means we either missed // the acquire event, or we had no more memory and could not add it. bpf_trace_printk( "could not find thread_to_held_mutex, thread: %d, mutex: %p\n", pid, mutex); return 1; } // For older kernels without "Bpf: allow access into map value arrays" // (https://lkml.org/lkml/2016/8/30/287) the bpf verifier will fail with an // invalid memory access on `leaf->held_mutexes[i]` below. On newer kernels, // we can avoid making this extra copy in `value` and use `leaf` directly. struct thread_to_held_mutex_leaf_t value = {}; bpf_probe_read_user(&value, sizeof(struct thread_to_held_mutex_leaf_t), leaf); #pragma unroll for (int i = 0; i < MAX_HELD_MUTEXES; ++i) { // Find the current mutex (if it exists), and clear it. // Note: Can't use `leaf->` in this if condition, see comment above. if (value.held_mutexes[i].mutex == mutex) { leaf->held_mutexes[i].mutex = 0; leaf->held_mutexes[i].stack_id = 0; } } return 0; } // Trace return from clone() syscall in the child thread (return value > 0). int trace_clone(struct pt_regs *ctx, unsigned long flags, void *child_stack, void *ptid, void *ctid, struct pt_regs *regs) { u32 child_pid = PT_REGS_RC(ctx); if (child_pid <= 0) { return 1; } struct thread_created_leaf_t thread_created_leaf = {}; thread_created_leaf.parent_pid = bpf_get_current_pid_tgid(); thread_created_leaf.stack_id = stack_traces.get_stackid(ctx, BPF_F_USER_STACK); bpf_get_current_comm(&thread_created_leaf.comm, sizeof(thread_created_leaf.comm)); struct thread_created_leaf_t *insert_result = thread_to_parent.lookup_or_try_init(&child_pid, &thread_created_leaf); if (!insert_result) { bpf_trace_printk( "could not add thread_created_key, child: %d, parent: %d\n", child_pid, thread_created_leaf.parent_pid); return 1; // Could not insert, no more memory } return 0; }