%PDF- %PDF-
Direktori : /usr/sbin/ |
Current File : //usr/sbin/tcpretrans-bpfcc |
#! /usr/bin/python3 # @lint-avoid-python-3-compatibility-imports # # tcpretrans Trace or count TCP retransmits and TLPs. # For Linux, uses BCC, eBPF. Embedded C. # # USAGE: tcpretrans [-c] [-h] [-l] [-4 | -6] # # This uses dynamic tracing of kernel functions, and will need to be updated # to match kernel changes. # # Copyright 2016 Netflix, Inc. # Licensed under the Apache License, Version 2.0 (the "License") # # 14-Feb-2016 Brendan Gregg Created this. # 03-Nov-2017 Matthias Tafelmeier Extended this. from __future__ import print_function from bcc import BPF import argparse from time import strftime from socket import inet_ntop, AF_INET, AF_INET6 from struct import pack from time import sleep # arguments examples = """examples: ./tcpretrans # trace TCP retransmits ./tcpretrans -l # include TLP attempts ./tcpretrans -4 # trace IPv4 family only ./tcpretrans -6 # trace IPv6 family only """ parser = argparse.ArgumentParser( description="Trace TCP retransmits", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=examples) parser.add_argument("-s", "--sequence", action="store_true", help="display TCP sequence numbers") parser.add_argument("-l", "--lossprobe", action="store_true", help="include tail loss probe attempts") parser.add_argument("-c", "--count", action="store_true", help="count occurred retransmits per flow") group = parser.add_mutually_exclusive_group() group.add_argument("-4", "--ipv4", action="store_true", help="trace IPv4 family only") group.add_argument("-6", "--ipv6", action="store_true", help="trace IPv6 family only") parser.add_argument("--ebpf", action="store_true", help=argparse.SUPPRESS) args = parser.parse_args() debug = 0 # define BPF program bpf_text = """ #include <uapi/linux/ptrace.h> #include <net/sock.h> #include <net/tcp.h> #include <bcc/proto.h> #define RETRANSMIT 1 #define TLP 2 // separate data structs for ipv4 and ipv6 struct ipv4_data_t { u32 pid; u64 ip; u32 seq; u32 saddr; u32 daddr; u16 lport; u16 dport; u64 state; u64 type; }; BPF_PERF_OUTPUT(ipv4_events); struct ipv6_data_t { u32 pid; u32 seq; u64 ip; unsigned __int128 saddr; unsigned __int128 daddr; u16 lport; u16 dport; u64 state; u64 type; }; BPF_PERF_OUTPUT(ipv6_events); // separate flow keys per address family struct ipv4_flow_key_t { u32 saddr; u32 daddr; u16 lport; u16 dport; }; BPF_HASH(ipv4_count, struct ipv4_flow_key_t); struct ipv6_flow_key_t { unsigned __int128 saddr; unsigned __int128 daddr; u16 lport; u16 dport; }; BPF_HASH(ipv6_count, struct ipv6_flow_key_t); """ bpf_text_kprobe = """ static int trace_event(struct pt_regs *ctx, struct sock *skp, struct sk_buff *skb, int type) { struct tcp_skb_cb *tcb; u32 seq; if (skp == NULL) return 0; u32 pid = bpf_get_current_pid_tgid() >> 32; // pull in details u16 family = skp->__sk_common.skc_family; u16 lport = skp->__sk_common.skc_num; u16 dport = skp->__sk_common.skc_dport; char state = skp->__sk_common.skc_state; seq = 0; if (skb) { /* macro TCP_SKB_CB from net/tcp.h */ tcb = ((struct tcp_skb_cb *)&((skb)->cb[0])); seq = tcb->seq; } FILTER_FAMILY if (family == AF_INET) { IPV4_INIT IPV4_CORE } else if (family == AF_INET6) { IPV6_INIT IPV6_CORE } // else drop return 0; } """ bpf_text_kprobe_retransmit = """ int trace_retransmit(struct pt_regs *ctx, struct sock *sk, struct sk_buff *skb) { trace_event(ctx, sk, skb, RETRANSMIT); return 0; } """ bpf_text_kprobe_tlp = """ int trace_tlp(struct pt_regs *ctx, struct sock *sk) { trace_event(ctx, sk, NULL, TLP); return 0; } """ bpf_text_tracepoint = """ TRACEPOINT_PROBE(tcp, tcp_retransmit_skb) { struct tcp_skb_cb *tcb; u32 seq; u32 pid = bpf_get_current_pid_tgid() >> 32; const struct sock *skp = (const struct sock *)args->skaddr; const struct sk_buff *skb = (const struct sk_buff *)args->skbaddr; u16 lport = args->sport; u16 dport = args->dport; char state = skp->__sk_common.skc_state; u16 family = skp->__sk_common.skc_family; seq = 0; if (skb) { /* macro TCP_SKB_CB from net/tcp.h */ tcb = ((struct tcp_skb_cb *)&((skb)->cb[0])); seq = tcb->seq; } FILTER_FAMILY if (family == AF_INET) { IPV4_CODE } else if (family == AF_INET6) { IPV6_CODE } return 0; } """ struct_init = { 'ipv4': { 'count' : """ struct ipv4_flow_key_t flow_key = {}; flow_key.saddr = skp->__sk_common.skc_rcv_saddr; flow_key.daddr = skp->__sk_common.skc_daddr; // lport is host order flow_key.lport = lport; flow_key.dport = ntohs(dport);""", 'trace' : """ struct ipv4_data_t data4 = {}; data4.pid = pid; data4.ip = 4; data4.seq = seq; data4.type = type; data4.saddr = skp->__sk_common.skc_rcv_saddr; data4.daddr = skp->__sk_common.skc_daddr; // lport is host order data4.lport = lport; data4.dport = ntohs(dport); data4.state = state; """ }, 'ipv6': { 'count' : """ struct ipv6_flow_key_t flow_key = {}; bpf_probe_read_kernel(&flow_key.saddr, sizeof(flow_key.saddr), skp->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32); bpf_probe_read_kernel(&flow_key.daddr, sizeof(flow_key.daddr), skp->__sk_common.skc_v6_daddr.in6_u.u6_addr32); // lport is host order flow_key.lport = lport; flow_key.dport = ntohs(dport);""", 'trace' : """ struct ipv6_data_t data6 = {}; data6.pid = pid; data6.ip = 6; data6.seq = seq; data6.type = type; bpf_probe_read_kernel(&data6.saddr, sizeof(data6.saddr), skp->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32); bpf_probe_read_kernel(&data6.daddr, sizeof(data6.daddr), skp->__sk_common.skc_v6_daddr.in6_u.u6_addr32); // lport is host order data6.lport = lport; data6.dport = ntohs(dport); data6.state = state;""" } } struct_init_tracepoint = { 'ipv4': { 'count' : """ struct ipv4_flow_key_t flow_key = {}; __builtin_memcpy(&flow_key.saddr, args->saddr, sizeof(flow_key.saddr)); __builtin_memcpy(&flow_key.daddr, args->daddr, sizeof(flow_key.daddr)); flow_key.lport = lport; flow_key.dport = dport; ipv4_count.increment(flow_key); """, 'trace' : """ struct ipv4_data_t data4 = {}; data4.pid = pid; data4.lport = lport; data4.dport = dport; data4.type = RETRANSMIT; data4.ip = 4; data4.seq = seq; data4.state = state; __builtin_memcpy(&data4.saddr, args->saddr, sizeof(data4.saddr)); __builtin_memcpy(&data4.daddr, args->daddr, sizeof(data4.daddr)); ipv4_events.perf_submit(args, &data4, sizeof(data4)); """ }, 'ipv6': { 'count' : """ struct ipv6_flow_key_t flow_key = {}; __builtin_memcpy(&flow_key.saddr, args->saddr_v6, sizeof(flow_key.saddr)); __builtin_memcpy(&flow_key.daddr, args->daddr_v6, sizeof(flow_key.daddr)); flow_key.lport = lport; flow_key.dport = dport; ipv6_count.increment(flow_key); """, 'trace' : """ struct ipv6_data_t data6 = {}; data6.pid = pid; data6.lport = lport; data6.dport = dport; data6.type = RETRANSMIT; data6.ip = 6; data6.seq = seq; data6.state = state; __builtin_memcpy(&data6.saddr, args->saddr_v6, sizeof(data6.saddr)); __builtin_memcpy(&data6.daddr, args->daddr_v6, sizeof(data6.daddr)); ipv6_events.perf_submit(args, &data6, sizeof(data6)); """ } } count_core_base = """ COUNT_STRUCT.increment(flow_key); """ if BPF.tracepoint_exists("tcp", "tcp_retransmit_skb"): if args.count: bpf_text_tracepoint = bpf_text_tracepoint.replace("IPV4_CODE", struct_init_tracepoint['ipv4']['count']) bpf_text_tracepoint = bpf_text_tracepoint.replace("IPV6_CODE", struct_init_tracepoint['ipv6']['count']) else: bpf_text_tracepoint = bpf_text_tracepoint.replace("IPV4_CODE", struct_init_tracepoint['ipv4']['trace']) bpf_text_tracepoint = bpf_text_tracepoint.replace("IPV6_CODE", struct_init_tracepoint['ipv6']['trace']) bpf_text += bpf_text_tracepoint if args.lossprobe or not BPF.tracepoint_exists("tcp", "tcp_retransmit_skb"): bpf_text += bpf_text_kprobe if args.count: bpf_text = bpf_text.replace("IPV4_INIT", struct_init['ipv4']['count']) bpf_text = bpf_text.replace("IPV6_INIT", struct_init['ipv6']['count']) bpf_text = bpf_text.replace("IPV4_CORE", count_core_base.replace("COUNT_STRUCT", 'ipv4_count')) bpf_text = bpf_text.replace("IPV6_CORE", count_core_base.replace("COUNT_STRUCT", 'ipv6_count')) else: bpf_text = bpf_text.replace("IPV4_INIT", struct_init['ipv4']['trace']) bpf_text = bpf_text.replace("IPV6_INIT", struct_init['ipv6']['trace']) bpf_text = bpf_text.replace("IPV4_CORE", "ipv4_events.perf_submit(ctx, &data4, sizeof(data4));") bpf_text = bpf_text.replace("IPV6_CORE", "ipv6_events.perf_submit(ctx, &data6, sizeof(data6));") if args.lossprobe: bpf_text += bpf_text_kprobe_tlp if not BPF.tracepoint_exists("tcp", "tcp_retransmit_skb"): bpf_text += bpf_text_kprobe_retransmit if args.ipv4: bpf_text = bpf_text.replace('FILTER_FAMILY', 'if (family != AF_INET) { return 0; }') elif args.ipv6: bpf_text = bpf_text.replace('FILTER_FAMILY', 'if (family != AF_INET6) { return 0; }') else: bpf_text = bpf_text.replace('FILTER_FAMILY', '') if debug or args.ebpf: print(bpf_text) if args.ebpf: exit() # from bpf_text: type = {} type[1] = 'R' type[2] = 'L' # from include/net/tcp_states.h: tcpstate = {} tcpstate[1] = 'ESTABLISHED' tcpstate[2] = 'SYN_SENT' tcpstate[3] = 'SYN_RECV' tcpstate[4] = 'FIN_WAIT1' tcpstate[5] = 'FIN_WAIT2' tcpstate[6] = 'TIME_WAIT' tcpstate[7] = 'CLOSE' tcpstate[8] = 'CLOSE_WAIT' tcpstate[9] = 'LAST_ACK' tcpstate[10] = 'LISTEN' tcpstate[11] = 'CLOSING' tcpstate[12] = 'NEW_SYN_RECV' # process event def print_ipv4_event(cpu, data, size): event = b["ipv4_events"].event(data) print("%-8s %-7d %-2d %-20s %1s> %-20s" % ( strftime("%H:%M:%S"), event.pid, event.ip, "%s:%d" % (inet_ntop(AF_INET, pack('I', event.saddr)), event.lport), type[event.type], "%s:%s" % (inet_ntop(AF_INET, pack('I', event.daddr)), event.dport)), end='') if args.sequence: print(" %-12s %s" % (tcpstate[event.state], event.seq)) else: print(" %s" % (tcpstate[event.state])) def print_ipv6_event(cpu, data, size): event = b["ipv6_events"].event(data) print("%-8s %-7d %-2d %-20s %1s> %-20s" % ( strftime("%H:%M:%S"), event.pid, event.ip, "%s:%d" % (inet_ntop(AF_INET6, event.saddr), event.lport), type[event.type], "%s:%d" % (inet_ntop(AF_INET6, event.daddr), event.dport)), end='') if args.sequence: print(" %-12s %s" % (tcpstate[event.state], event.seq)) else: print(" %s" % (tcpstate[event.state])) def depict_cnt(counts_tab, l3prot='ipv4'): for k, v in sorted(counts_tab.items(), key=lambda counts: counts[1].value): depict_key = "" ep_fmt = "[%s]#%d" if l3prot == 'ipv4': depict_key = "%-20s <-> %-20s" % (ep_fmt % (inet_ntop(AF_INET, pack('I', k.saddr)), k.lport), ep_fmt % (inet_ntop(AF_INET, pack('I', k.daddr)), k.dport)) else: depict_key = "%-20s <-> %-20s" % (ep_fmt % (inet_ntop(AF_INET6, k.saddr), k.lport), ep_fmt % (inet_ntop(AF_INET6, k.daddr), k.dport)) print ("%s %10d" % (depict_key, v.value)) # initialize BPF b = BPF(text=bpf_text) if not BPF.tracepoint_exists("tcp", "tcp_retransmit_skb"): b.attach_kprobe(event="tcp_retransmit_skb", fn_name="trace_retransmit") if args.lossprobe: b.attach_kprobe(event="tcp_send_loss_probe", fn_name="trace_tlp") print("Tracing retransmits ... Hit Ctrl-C to end") if args.count: try: while 1: sleep(99999999) except BaseException: pass # header print("\n%-25s %-25s %-10s" % ( "LADDR:LPORT", "RADDR:RPORT", "RETRANSMITS")) depict_cnt(b.get_table("ipv4_count")) depict_cnt(b.get_table("ipv6_count"), l3prot='ipv6') # read events else: # header print("%-8s %-7s %-2s %-20s %1s> %-20s" % ("TIME", "PID", "IP", "LADDR:LPORT", "T", "RADDR:RPORT"), end='') if args.sequence: print(" %-12s %-10s" % ("STATE", "SEQ")) else: print(" %-4s" % ("STATE")) b["ipv4_events"].open_perf_buffer(print_ipv4_event) b["ipv6_events"].open_perf_buffer(print_ipv6_event) while 1: try: b.perf_buffer_poll() except KeyboardInterrupt: exit()