%PDF- %PDF-
Direktori : /usr/sbin/ |
Current File : //usr/sbin/runqlat-bpfcc |
#! /usr/bin/python3 # @lint-avoid-python-3-compatibility-imports # # runqlat Run queue (scheduler) latency as a histogram. # For Linux, uses BCC, eBPF. # # USAGE: runqlat [-h] [-T] [-m] [-P] [-L] [-p PID] [interval] [count] # # This measures the time a task spends waiting on a run queue for a turn # on-CPU, and shows this time as a histogram. This time should be small, but a # task may need to wait its turn due to CPU load. # # This measures two types of run queue latency: # 1. The time from a task being enqueued on a run queue to its context switch # and execution. This traces ttwu_do_wakeup(), wake_up_new_task() -> # finish_task_switch() with either raw tracepoints (if supported) or kprobes # and instruments the run queue latency after a voluntary context switch. # 2. The time from when a task was involuntary context switched and still # in the runnable state, to when it next executed. This is instrumented # from finish_task_switch() alone. # # Copyright 2016 Netflix, Inc. # Licensed under the Apache License, Version 2.0 (the "License") # # 07-Feb-2016 Brendan Gregg Created this. from __future__ import print_function from bcc import BPF from time import sleep, strftime import argparse # arguments examples = """examples: ./runqlat # summarize run queue latency as a histogram ./runqlat 1 10 # print 1 second summaries, 10 times ./runqlat -mT 1 # 1s summaries, milliseconds, and timestamps ./runqlat -P # show each PID separately ./runqlat -p 185 # trace PID 185 only """ parser = argparse.ArgumentParser( description="Summarize run queue (scheduler) latency as a histogram", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=examples) parser.add_argument("-T", "--timestamp", action="store_true", help="include timestamp on output") parser.add_argument("-m", "--milliseconds", action="store_true", help="millisecond histogram") parser.add_argument("-P", "--pids", action="store_true", help="print a histogram per process ID") # PID options are --pid and --pids, so namespaces should be --pidns (not done # yet) and --pidnss: parser.add_argument("--pidnss", action="store_true", help="print a histogram per PID namespace") parser.add_argument("-L", "--tids", action="store_true", help="print a histogram per thread ID") parser.add_argument("-p", "--pid", help="trace this PID only") parser.add_argument("interval", nargs="?", default=99999999, help="output interval, in seconds") parser.add_argument("count", nargs="?", default=99999999, help="number of outputs") parser.add_argument("--ebpf", action="store_true", help=argparse.SUPPRESS) args = parser.parse_args() countdown = int(args.count) debug = 0 # define BPF program bpf_text = """ #include <uapi/linux/ptrace.h> #include <linux/sched.h> #include <linux/nsproxy.h> #include <linux/pid_namespace.h> #include <linux/init_task.h> typedef struct pid_key { u32 id; u64 slot; } pid_key_t; typedef struct pidns_key { u32 id; u64 slot; } pidns_key_t; BPF_HASH(start, u32); STORAGE // record enqueue timestamp static int trace_enqueue(u32 tgid, u32 pid) { if (FILTER || pid == 0) return 0; u64 ts = bpf_ktime_get_ns(); start.update(&pid, &ts); return 0; } static __always_inline unsigned int pid_namespace(struct task_struct *task) { /* pids[] was removed from task_struct since commit 2c4704756cab7cfa031ada4dab361562f0e357c0 * Using the macro INIT_PID_LINK as a conditional judgment. */ #ifdef INIT_PID_LINK struct pid_link pids; unsigned int level; struct upid upid; struct ns_common ns; /* get the pid namespace by following task_active_pid_ns(), * pid->numbers[pid->level].ns */ bpf_probe_read_kernel(&pids, sizeof(pids), &task->pids[PIDTYPE_PID]); bpf_probe_read_kernel(&level, sizeof(level), &pids.pid->level); bpf_probe_read_kernel(&upid, sizeof(upid), &pids.pid->numbers[level]); bpf_probe_read_kernel(&ns, sizeof(ns), &upid.ns->ns); return ns.inum; #else struct pid *pid; unsigned int level; struct upid upid; struct ns_common ns; /* get the pid namespace by following task_active_pid_ns(), * pid->numbers[pid->level].ns */ bpf_probe_read_kernel(&pid, sizeof(pid), &task->thread_pid); bpf_probe_read_kernel(&level, sizeof(level), &pid->level); bpf_probe_read_kernel(&upid, sizeof(upid), &pid->numbers[level]); bpf_probe_read_kernel(&ns, sizeof(ns), &upid.ns->ns); return ns.inum; #endif } """ bpf_text_kprobe = """ int trace_wake_up_new_task(struct pt_regs *ctx, struct task_struct *p) { return trace_enqueue(p->tgid, p->pid); } int trace_ttwu_do_wakeup(struct pt_regs *ctx, struct rq *rq, struct task_struct *p, int wake_flags) { return trace_enqueue(p->tgid, p->pid); } // calculate latency int trace_run(struct pt_regs *ctx, struct task_struct *prev) { u32 pid, tgid; // ivcsw: treat like an enqueue event and store timestamp if (prev->STATE_FIELD == TASK_RUNNING) { tgid = prev->tgid; pid = prev->pid; if (!(FILTER || pid == 0)) { u64 ts = bpf_ktime_get_ns(); start.update(&pid, &ts); } } tgid = bpf_get_current_pid_tgid() >> 32; pid = bpf_get_current_pid_tgid(); if (FILTER || pid == 0) return 0; u64 *tsp, delta; // fetch timestamp and calculate delta tsp = start.lookup(&pid); if (tsp == 0) { return 0; // missed enqueue } delta = bpf_ktime_get_ns() - *tsp; FACTOR // store as histogram STORE start.delete(&pid); return 0; } """ bpf_text_raw_tp = """ RAW_TRACEPOINT_PROBE(sched_wakeup) { // TP_PROTO(struct task_struct *p) struct task_struct *p = (struct task_struct *)ctx->args[0]; return trace_enqueue(p->tgid, p->pid); } RAW_TRACEPOINT_PROBE(sched_wakeup_new) { // TP_PROTO(struct task_struct *p) struct task_struct *p = (struct task_struct *)ctx->args[0]; return trace_enqueue(p->tgid, p->pid); } RAW_TRACEPOINT_PROBE(sched_switch) { // TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next) struct task_struct *prev = (struct task_struct *)ctx->args[1]; struct task_struct *next = (struct task_struct *)ctx->args[2]; u32 pid, tgid; // ivcsw: treat like an enqueue event and store timestamp if (prev->STATE_FIELD == TASK_RUNNING) { tgid = prev->tgid; pid = prev->pid; if (!(FILTER || pid == 0)) { u64 ts = bpf_ktime_get_ns(); start.update(&pid, &ts); } } tgid = next->tgid; pid = next->pid; if (FILTER || pid == 0) return 0; u64 *tsp, delta; // fetch timestamp and calculate delta tsp = start.lookup(&pid); if (tsp == 0) { return 0; // missed enqueue } delta = bpf_ktime_get_ns() - *tsp; FACTOR // store as histogram STORE start.delete(&pid); return 0; } """ is_support_raw_tp = BPF.support_raw_tracepoint() if is_support_raw_tp: bpf_text += bpf_text_raw_tp else: bpf_text += bpf_text_kprobe # code substitutions if BPF.kernel_struct_has_field(b'task_struct', b'__state') == 1: bpf_text = bpf_text.replace('STATE_FIELD', '__state') else: bpf_text = bpf_text.replace('STATE_FIELD', 'state') if args.pid: # pid from userspace point of view is thread group from kernel pov bpf_text = bpf_text.replace('FILTER', 'tgid != %s' % args.pid) else: bpf_text = bpf_text.replace('FILTER', '0') if args.milliseconds: bpf_text = bpf_text.replace('FACTOR', 'delta /= 1000000;') label = "msecs" else: bpf_text = bpf_text.replace('FACTOR', 'delta /= 1000;') label = "usecs" if args.pids or args.tids: section = "pid" pid = "tgid" if args.tids: pid = "pid" section = "tid" bpf_text = bpf_text.replace('STORAGE', 'BPF_HISTOGRAM(dist, pid_key_t);') bpf_text = bpf_text.replace('STORE', 'pid_key_t key = {}; key.id = ' + pid + '; key.slot = bpf_log2l(delta); ' + 'dist.increment(key);') elif args.pidnss: section = "pidns" bpf_text = bpf_text.replace('STORAGE', 'BPF_HISTOGRAM(dist, pidns_key_t);') bpf_text = bpf_text.replace('STORE', 'pidns_key_t key = ' + '{.id = pid_namespace(prev), ' + '.slot = bpf_log2l(delta)}; dist.atomic_increment(key);') else: section = "" bpf_text = bpf_text.replace('STORAGE', 'BPF_HISTOGRAM(dist);') bpf_text = bpf_text.replace('STORE', 'dist.atomic_increment(bpf_log2l(delta));') if debug or args.ebpf: print(bpf_text) if args.ebpf: exit() # load BPF program b = BPF(text=bpf_text) if not is_support_raw_tp: b.attach_kprobe(event="ttwu_do_wakeup", fn_name="trace_ttwu_do_wakeup") b.attach_kprobe(event="wake_up_new_task", fn_name="trace_wake_up_new_task") b.attach_kprobe(event_re=r'^finish_task_switch$|^finish_task_switch\.isra\.\d$', fn_name="trace_run") print("Tracing run queue latency... Hit Ctrl-C to end.") # output exiting = 0 if args.interval else 1 dist = b.get_table("dist") while (1): try: sleep(int(args.interval)) except KeyboardInterrupt: exiting = 1 print() if args.timestamp: print("%-8s\n" % strftime("%H:%M:%S"), end="") dist.print_log2_hist(label, section, section_print_fn=int) dist.clear() countdown -= 1 if exiting or countdown == 0: exit()