%PDF- %PDF-
Direktori : /usr/lib/python3.12/ |
Current File : //usr/lib/python3.12/os.py |
r"""OS routines for NT or Posix depending on what system we're on. This exports: - all functions from posix or nt, e.g. unlink, stat, etc. - os.path is either posixpath or ntpath - os.name is either 'posix' or 'nt' - os.curdir is a string representing the current directory (always '.') - os.pardir is a string representing the parent directory (always '..') - os.sep is the (or a most common) pathname separator ('/' or '\\') - os.extsep is the extension separator (always '.') - os.altsep is the alternate pathname separator (None or '/') - os.pathsep is the component separator used in $PATH etc - os.linesep is the line separator in text files ('\r' or '\n' or '\r\n') - os.defpath is the default search path for executables - os.devnull is the file path of the null device ('/dev/null', etc.) Programs that import and use 'os' stand a better chance of being portable between different platforms. Of course, they must then only use functions that are defined by all platforms (e.g., unlink and opendir), and leave all pathname manipulation to os.path (e.g., split and join). """ #' import abc import sys import stat as st from _collections_abc import _check_methods GenericAlias = type(list[int]) _names = sys.builtin_module_names # Note: more names are added to __all__ later. __all__ = ["altsep", "curdir", "pardir", "sep", "pathsep", "linesep", "defpath", "name", "path", "devnull", "SEEK_SET", "SEEK_CUR", "SEEK_END", "fsencode", "fsdecode", "get_exec_path", "fdopen", "extsep"] def _exists(name): return name in globals() def _get_exports_list(module): try: return list(module.__all__) except AttributeError: return [n for n in dir(module) if n[0] != '_'] # Any new dependencies of the os module and/or changes in path separator # requires updating importlib as well. if 'posix' in _names: name = 'posix' linesep = '\n' from posix import * try: from posix import _exit __all__.append('_exit') except ImportError: pass import posixpath as path try: from posix import _have_functions except ImportError: pass import posix __all__.extend(_get_exports_list(posix)) del posix elif 'nt' in _names: name = 'nt' linesep = '\r\n' from nt import * try: from nt import _exit __all__.append('_exit') except ImportError: pass import ntpath as path import nt __all__.extend(_get_exports_list(nt)) del nt try: from nt import _have_functions except ImportError: pass else: raise ImportError('no os specific module found') sys.modules['os.path'] = path from os.path import (curdir, pardir, sep, pathsep, defpath, extsep, altsep, devnull) del _names if _exists("_have_functions"): _globals = globals() def _add(str, fn): if (fn in _globals) and (str in _have_functions): _set.add(_globals[fn]) _set = set() _add("HAVE_FACCESSAT", "access") _add("HAVE_FCHMODAT", "chmod") _add("HAVE_FCHOWNAT", "chown") _add("HAVE_FSTATAT", "stat") _add("HAVE_FUTIMESAT", "utime") _add("HAVE_LINKAT", "link") _add("HAVE_MKDIRAT", "mkdir") _add("HAVE_MKFIFOAT", "mkfifo") _add("HAVE_MKNODAT", "mknod") _add("HAVE_OPENAT", "open") _add("HAVE_READLINKAT", "readlink") _add("HAVE_RENAMEAT", "rename") _add("HAVE_SYMLINKAT", "symlink") _add("HAVE_UNLINKAT", "unlink") _add("HAVE_UNLINKAT", "rmdir") _add("HAVE_UTIMENSAT", "utime") supports_dir_fd = _set _set = set() _add("HAVE_FACCESSAT", "access") supports_effective_ids = _set _set = set() _add("HAVE_FCHDIR", "chdir") _add("HAVE_FCHMOD", "chmod") _add("HAVE_FCHOWN", "chown") _add("HAVE_FDOPENDIR", "listdir") _add("HAVE_FDOPENDIR", "scandir") _add("HAVE_FEXECVE", "execve") _set.add(stat) # fstat always works _add("HAVE_FTRUNCATE", "truncate") _add("HAVE_FUTIMENS", "utime") _add("HAVE_FUTIMES", "utime") _add("HAVE_FPATHCONF", "pathconf") if _exists("statvfs") and _exists("fstatvfs"): # mac os x10.3 _add("HAVE_FSTATVFS", "statvfs") supports_fd = _set _set = set() _add("HAVE_FACCESSAT", "access") # Some platforms don't support lchmod(). Often the function exists # anyway, as a stub that always returns ENOSUP or perhaps EOPNOTSUPP. # (No, I don't know why that's a good design.) ./configure will detect # this and reject it--so HAVE_LCHMOD still won't be defined on such # platforms. This is Very Helpful. # # However, sometimes platforms without a working lchmod() *do* have # fchmodat(). (Examples: Linux kernel 3.2 with glibc 2.15, # OpenIndiana 3.x.) And fchmodat() has a flag that theoretically makes # it behave like lchmod(). So in theory it would be a suitable # replacement for lchmod(). But when lchmod() doesn't work, fchmodat()'s # flag doesn't work *either*. Sadly ./configure isn't sophisticated # enough to detect this condition--it only determines whether or not # fchmodat() minimally works. # # Therefore we simply ignore fchmodat() when deciding whether or not # os.chmod supports follow_symlinks. Just checking lchmod() is # sufficient. After all--if you have a working fchmodat(), your # lchmod() almost certainly works too. # # _add("HAVE_FCHMODAT", "chmod") _add("HAVE_FCHOWNAT", "chown") _add("HAVE_FSTATAT", "stat") _add("HAVE_LCHFLAGS", "chflags") _add("HAVE_LCHMOD", "chmod") if _exists("lchown"): # mac os x10.3 _add("HAVE_LCHOWN", "chown") _add("HAVE_LINKAT", "link") _add("HAVE_LUTIMES", "utime") _add("HAVE_LSTAT", "stat") _add("HAVE_FSTATAT", "stat") _add("HAVE_UTIMENSAT", "utime") _add("MS_WINDOWS", "stat") supports_follow_symlinks = _set del _set del _have_functions del _globals del _add # Python uses fixed values for the SEEK_ constants; they are mapped # to native constants if necessary in posixmodule.c # Other possible SEEK values are directly imported from posixmodule.c SEEK_SET = 0 SEEK_CUR = 1 SEEK_END = 2 # Super directory utilities. # (Inspired by Eric Raymond; the doc strings are mostly his) def makedirs(name, mode=0o777, exist_ok=False): """makedirs(name [, mode=0o777][, exist_ok=False]) Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any intermediate path segment (not just the rightmost) will be created if it does not exist. If the target directory already exists, raise an OSError if exist_ok is False. Otherwise no exception is raised. This is recursive. """ head, tail = path.split(name) if not tail: head, tail = path.split(head) if head and tail and not path.exists(head): try: makedirs(head, exist_ok=exist_ok) except FileExistsError: # Defeats race condition when another thread created the path pass cdir = curdir if isinstance(tail, bytes): cdir = bytes(curdir, 'ASCII') if tail == cdir: # xxx/newdir/. exists if xxx/newdir exists return try: mkdir(name, mode) except OSError: # Cannot rely on checking for EEXIST, since the operating system # could give priority to other errors like EACCES or EROFS if not exist_ok or not path.isdir(name): raise def removedirs(name): """removedirs(name) Super-rmdir; remove a leaf directory and all empty intermediate ones. Works like rmdir except that, if the leaf directory is successfully removed, directories corresponding to rightmost path segments will be pruned away until either the whole path is consumed or an error occurs. Errors during this latter phase are ignored -- they generally mean that a directory was not empty. """ rmdir(name) head, tail = path.split(name) if not tail: head, tail = path.split(head) while head and tail: try: rmdir(head) except OSError: break head, tail = path.split(head) def renames(old, new): """renames(old, new) Super-rename; create directories as necessary and delete any left empty. Works like rename, except creation of any intermediate directories needed to make the new pathname good is attempted first. After the rename, directories corresponding to rightmost path segments of the old name will be pruned until either the whole path is consumed or a nonempty directory is found. Note: this function can fail with the new directory structure made if you lack permissions needed to unlink the leaf directory or file. """ head, tail = path.split(new) if head and tail and not path.exists(head): makedirs(head) rename(old, new) head, tail = path.split(old) if head and tail: try: removedirs(head) except OSError: pass __all__.extend(["makedirs", "removedirs", "renames"]) def walk(top, topdown=True, onerror=None, followlinks=False): """Directory tree generator. For each directory in the directory tree rooted at top (including top itself, but excluding '.' and '..'), yields a 3-tuple dirpath, dirnames, filenames dirpath is a string, the path to the directory. dirnames is a list of the names of the subdirectories in dirpath (including symlinks to directories, and excluding '.' and '..'). filenames is a list of the names of the non-directory files in dirpath. Note that the names in the lists are just names, with no path components. To get a full path (which begins with top) to a file or directory in dirpath, do os.path.join(dirpath, name). If optional arg 'topdown' is true or not specified, the triple for a directory is generated before the triples for any of its subdirectories (directories are generated top down). If topdown is false, the triple for a directory is generated after the triples for all of its subdirectories (directories are generated bottom up). When topdown is true, the caller can modify the dirnames list in-place (e.g., via del or slice assignment), and walk will only recurse into the subdirectories whose names remain in dirnames; this can be used to prune the search, or to impose a specific order of visiting. Modifying dirnames when topdown is false has no effect on the behavior of os.walk(), since the directories in dirnames have already been generated by the time dirnames itself is generated. No matter the value of topdown, the list of subdirectories is retrieved before the tuples for the directory and its subdirectories are generated. By default errors from the os.scandir() call are ignored. If optional arg 'onerror' is specified, it should be a function; it will be called with one argument, an OSError instance. It can report the error to continue with the walk, or raise the exception to abort the walk. Note that the filename is available as the filename attribute of the exception object. By default, os.walk does not follow symbolic links to subdirectories on systems that support them. In order to get this functionality, set the optional argument 'followlinks' to true. Caution: if you pass a relative pathname for top, don't change the current working directory between resumptions of walk. walk never changes the current directory, and assumes that the client doesn't either. Example: import os from os.path import join, getsize for root, dirs, files in os.walk('python/Lib/email'): print(root, "consumes ") print(sum(getsize(join(root, name)) for name in files), end=" ") print("bytes in", len(files), "non-directory files") if 'CVS' in dirs: dirs.remove('CVS') # don't visit CVS directories """ sys.audit("os.walk", top, topdown, onerror, followlinks) stack = [fspath(top)] islink, join = path.islink, path.join while stack: top = stack.pop() if isinstance(top, tuple): yield top continue dirs = [] nondirs = [] walk_dirs = [] # We may not have read permission for top, in which case we can't # get a list of the files the directory contains. # We suppress the exception here, rather than blow up for a # minor reason when (say) a thousand readable directories are still # left to visit. try: scandir_it = scandir(top) except OSError as error: if onerror is not None: onerror(error) continue cont = False with scandir_it: while True: try: try: entry = next(scandir_it) except StopIteration: break except OSError as error: if onerror is not None: onerror(error) cont = True break try: is_dir = entry.is_dir() except OSError: # If is_dir() raises an OSError, consider the entry not to # be a directory, same behaviour as os.path.isdir(). is_dir = False if is_dir: dirs.append(entry.name) else: nondirs.append(entry.name) if not topdown and is_dir: # Bottom-up: traverse into sub-directory, but exclude # symlinks to directories if followlinks is False if followlinks: walk_into = True else: try: is_symlink = entry.is_symlink() except OSError: # If is_symlink() raises an OSError, consider the # entry not to be a symbolic link, same behaviour # as os.path.islink(). is_symlink = False walk_into = not is_symlink if walk_into: walk_dirs.append(entry.path) if cont: continue if topdown: # Yield before sub-directory traversal if going top down yield top, dirs, nondirs # Traverse into sub-directories for dirname in reversed(dirs): new_path = join(top, dirname) # bpo-23605: os.path.islink() is used instead of caching # entry.is_symlink() result during the loop on os.scandir() because # the caller can replace the directory entry during the "yield" # above. if followlinks or not islink(new_path): stack.append(new_path) else: # Yield after sub-directory traversal if going bottom up stack.append((top, dirs, nondirs)) # Traverse into sub-directories for new_path in reversed(walk_dirs): stack.append(new_path) __all__.append("walk") if {open, stat} <= supports_dir_fd and {scandir, stat} <= supports_fd: def fwalk(top=".", topdown=True, onerror=None, *, follow_symlinks=False, dir_fd=None): """Directory tree generator. This behaves exactly like walk(), except that it yields a 4-tuple dirpath, dirnames, filenames, dirfd `dirpath`, `dirnames` and `filenames` are identical to walk() output, and `dirfd` is a file descriptor referring to the directory `dirpath`. The advantage of fwalk() over walk() is that it's safe against symlink races (when follow_symlinks is False). If dir_fd is not None, it should be a file descriptor open to a directory, and top should be relative; top will then be relative to that directory. (dir_fd is always supported for fwalk.) Caution: Since fwalk() yields file descriptors, those are only valid until the next iteration step, so you should dup() them if you want to keep them for a longer period. Example: import os for root, dirs, files, rootfd in os.fwalk('python/Lib/email'): print(root, "consumes", end="") print(sum(os.stat(name, dir_fd=rootfd).st_size for name in files), end="") print("bytes in", len(files), "non-directory files") if 'CVS' in dirs: dirs.remove('CVS') # don't visit CVS directories """ sys.audit("os.fwalk", top, topdown, onerror, follow_symlinks, dir_fd) top = fspath(top) # Note: To guard against symlink races, we use the standard # lstat()/open()/fstat() trick. if not follow_symlinks: orig_st = stat(top, follow_symlinks=False, dir_fd=dir_fd) topfd = open(top, O_RDONLY | O_NONBLOCK, dir_fd=dir_fd) try: if (follow_symlinks or (st.S_ISDIR(orig_st.st_mode) and path.samestat(orig_st, stat(topfd)))): yield from _fwalk(topfd, top, isinstance(top, bytes), topdown, onerror, follow_symlinks) finally: close(topfd) def _fwalk(topfd, toppath, isbytes, topdown, onerror, follow_symlinks): # Note: This uses O(depth of the directory tree) file descriptors: if # necessary, it can be adapted to only require O(1) FDs, see issue # #13734. scandir_it = scandir(topfd) dirs = [] nondirs = [] entries = None if topdown or follow_symlinks else [] for entry in scandir_it: name = entry.name if isbytes: name = fsencode(name) try: if entry.is_dir(): dirs.append(name) if entries is not None: entries.append(entry) else: nondirs.append(name) except OSError: try: # Add dangling symlinks, ignore disappeared files if entry.is_symlink(): nondirs.append(name) except OSError: pass if topdown: yield toppath, dirs, nondirs, topfd for name in dirs if entries is None else zip(dirs, entries): try: if not follow_symlinks: if topdown: orig_st = stat(name, dir_fd=topfd, follow_symlinks=False) else: assert entries is not None name, entry = name orig_st = entry.stat(follow_symlinks=False) dirfd = open(name, O_RDONLY | O_NONBLOCK, dir_fd=topfd) except OSError as err: if onerror is not None: onerror(err) continue try: if follow_symlinks or path.samestat(orig_st, stat(dirfd)): dirpath = path.join(toppath, name) yield from _fwalk(dirfd, dirpath, isbytes, topdown, onerror, follow_symlinks) finally: close(dirfd) if not topdown: yield toppath, dirs, nondirs, topfd __all__.append("fwalk") def execl(file, *args): """execl(file, *args) Execute the executable file with argument list args, replacing the current process. """ execv(file, args) def execle(file, *args): """execle(file, *args, env) Execute the executable file with argument list args and environment env, replacing the current process. """ env = args[-1] execve(file, args[:-1], env) def execlp(file, *args): """execlp(file, *args) Execute the executable file (which is searched for along $PATH) with argument list args, replacing the current process. """ execvp(file, args) def execlpe(file, *args): """execlpe(file, *args, env) Execute the executable file (which is searched for along $PATH) with argument list args and environment env, replacing the current process. """ env = args[-1] execvpe(file, args[:-1], env) def execvp(file, args): """execvp(file, args) Execute the executable file (which is searched for along $PATH) with argument list args, replacing the current process. args may be a list or tuple of strings. """ _execvpe(file, args) def execvpe(file, args, env): """execvpe(file, args, env) Execute the executable file (which is searched for along $PATH) with argument list args and environment env, replacing the current process. args may be a list or tuple of strings. """ _execvpe(file, args, env) __all__.extend(["execl","execle","execlp","execlpe","execvp","execvpe"]) def _execvpe(file, args, env=None): if env is not None: exec_func = execve argrest = (args, env) else: exec_func = execv argrest = (args,) env = environ if path.dirname(file): exec_func(file, *argrest) return saved_exc = None path_list = get_exec_path(env) if name != 'nt': file = fsencode(file) path_list = map(fsencode, path_list) for dir in path_list: fullname = path.join(dir, file) try: exec_func(fullname, *argrest) except (FileNotFoundError, NotADirectoryError) as e: last_exc = e except OSError as e: last_exc = e if saved_exc is None: saved_exc = e if saved_exc is not None: raise saved_exc raise last_exc def get_exec_path(env=None): """Returns the sequence of directories that will be searched for the named executable (similar to a shell) when launching a process. *env* must be an environment variable dict or None. If *env* is None, os.environ will be used. """ # Use a local import instead of a global import to limit the number of # modules loaded at startup: the os module is always loaded at startup by # Python. It may also avoid a bootstrap issue. import warnings if env is None: env = environ # {b'PATH': ...}.get('PATH') and {'PATH': ...}.get(b'PATH') emit a # BytesWarning when using python -b or python -bb: ignore the warning with warnings.catch_warnings(): warnings.simplefilter("ignore", BytesWarning) try: path_list = env.get('PATH') except TypeError: path_list = None if supports_bytes_environ: try: path_listb = env[b'PATH'] except (KeyError, TypeError): pass else: if path_list is not None: raise ValueError( "env cannot contain 'PATH' and b'PATH' keys") path_list = path_listb if path_list is not None and isinstance(path_list, bytes): path_list = fsdecode(path_list) if path_list is None: path_list = defpath return path_list.split(pathsep) # Change environ to automatically call putenv() and unsetenv() from _collections_abc import MutableMapping, Mapping class _Environ(MutableMapping): def __init__(self, data, encodekey, decodekey, encodevalue, decodevalue): self.encodekey = encodekey self.decodekey = decodekey self.encodevalue = encodevalue self.decodevalue = decodevalue self._data = data def __getitem__(self, key): try: value = self._data[self.encodekey(key)] except KeyError: # raise KeyError with the original key value raise KeyError(key) from None return self.decodevalue(value) def __setitem__(self, key, value): key = self.encodekey(key) value = self.encodevalue(value) putenv(key, value) self._data[key] = value def __delitem__(self, key): encodedkey = self.encodekey(key) unsetenv(encodedkey) try: del self._data[encodedkey] except KeyError: # raise KeyError with the original key value raise KeyError(key) from None def __iter__(self): # list() from dict object is an atomic operation keys = list(self._data) for key in keys: yield self.decodekey(key) def __len__(self): return len(self._data) def __repr__(self): formatted_items = ", ".join( f"{self.decodekey(key)!r}: {self.decodevalue(value)!r}" for key, value in self._data.items() ) return f"environ({{{formatted_items}}})" def copy(self): return dict(self) def setdefault(self, key, value): if key not in self: self[key] = value return self[key] def __ior__(self, other): self.update(other) return self def __or__(self, other): if not isinstance(other, Mapping): return NotImplemented new = dict(self) new.update(other) return new def __ror__(self, other): if not isinstance(other, Mapping): return NotImplemented new = dict(other) new.update(self) return new def _createenviron(): if name == 'nt': # Where Env Var Names Must Be UPPERCASE def check_str(value): if not isinstance(value, str): raise TypeError("str expected, not %s" % type(value).__name__) return value encode = check_str decode = str def encodekey(key): return encode(key).upper() data = {} for key, value in environ.items(): data[encodekey(key)] = value else: # Where Env Var Names Can Be Mixed Case encoding = sys.getfilesystemencoding() def encode(value): if not isinstance(value, str): raise TypeError("str expected, not %s" % type(value).__name__) return value.encode(encoding, 'surrogateescape') def decode(value): return value.decode(encoding, 'surrogateescape') encodekey = encode data = environ return _Environ(data, encodekey, decode, encode, decode) # unicode environ environ = _createenviron() del _createenviron def getenv(key, default=None): """Get an environment variable, return None if it doesn't exist. The optional second argument can specify an alternate default. key, default and the result are str.""" return environ.get(key, default) supports_bytes_environ = (name != 'nt') __all__.extend(("getenv", "supports_bytes_environ")) if supports_bytes_environ: def _check_bytes(value): if not isinstance(value, bytes): raise TypeError("bytes expected, not %s" % type(value).__name__) return value # bytes environ environb = _Environ(environ._data, _check_bytes, bytes, _check_bytes, bytes) del _check_bytes def getenvb(key, default=None): """Get an environment variable, return None if it doesn't exist. The optional second argument can specify an alternate default. key, default and the result are bytes.""" return environb.get(key, default) __all__.extend(("environb", "getenvb")) def _fscodec(): encoding = sys.getfilesystemencoding() errors = sys.getfilesystemencodeerrors() def fsencode(filename): """Encode filename (an os.PathLike, bytes, or str) to the filesystem encoding with 'surrogateescape' error handler, return bytes unchanged. On Windows, use 'strict' error handler if the file system encoding is 'mbcs' (which is the default encoding). """ filename = fspath(filename) # Does type-checking of `filename`. if isinstance(filename, str): return filename.encode(encoding, errors) else: return filename def fsdecode(filename): """Decode filename (an os.PathLike, bytes, or str) from the filesystem encoding with 'surrogateescape' error handler, return str unchanged. On Windows, use 'strict' error handler if the file system encoding is 'mbcs' (which is the default encoding). """ filename = fspath(filename) # Does type-checking of `filename`. if isinstance(filename, bytes): return filename.decode(encoding, errors) else: return filename return fsencode, fsdecode fsencode, fsdecode = _fscodec() del _fscodec # Supply spawn*() (probably only for Unix) if _exists("fork") and not _exists("spawnv") and _exists("execv"): P_WAIT = 0 P_NOWAIT = P_NOWAITO = 1 __all__.extend(["P_WAIT", "P_NOWAIT", "P_NOWAITO"]) # XXX Should we support P_DETACH? I suppose it could fork()**2 # and close the std I/O streams. Also, P_OVERLAY is the same # as execv*()? def _spawnvef(mode, file, args, env, func): # Internal helper; func is the exec*() function to use if not isinstance(args, (tuple, list)): raise TypeError('argv must be a tuple or a list') if not args or not args[0]: raise ValueError('argv first element cannot be empty') pid = fork() if not pid: # Child try: if env is None: func(file, args) else: func(file, args, env) except: _exit(127) else: # Parent if mode == P_NOWAIT: return pid # Caller is responsible for waiting! while 1: wpid, sts = waitpid(pid, 0) if WIFSTOPPED(sts): continue return waitstatus_to_exitcode(sts) def spawnv(mode, file, args): """spawnv(mode, file, args) -> integer Execute file with arguments from args in a subprocess. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return _spawnvef(mode, file, args, None, execv) def spawnve(mode, file, args, env): """spawnve(mode, file, args, env) -> integer Execute file with arguments from args in a subprocess with the specified environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return _spawnvef(mode, file, args, env, execve) # Note: spawnvp[e] isn't currently supported on Windows def spawnvp(mode, file, args): """spawnvp(mode, file, args) -> integer Execute file (which is looked for along $PATH) with arguments from args in a subprocess. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return _spawnvef(mode, file, args, None, execvp) def spawnvpe(mode, file, args, env): """spawnvpe(mode, file, args, env) -> integer Execute file (which is looked for along $PATH) with arguments from args in a subprocess with the supplied environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return _spawnvef(mode, file, args, env, execvpe) __all__.extend(["spawnv", "spawnve", "spawnvp", "spawnvpe"]) if _exists("spawnv"): # These aren't supplied by the basic Windows code # but can be easily implemented in Python def spawnl(mode, file, *args): """spawnl(mode, file, *args) -> integer Execute file with arguments from args in a subprocess. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return spawnv(mode, file, args) def spawnle(mode, file, *args): """spawnle(mode, file, *args, env) -> integer Execute file with arguments from args in a subprocess with the supplied environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ env = args[-1] return spawnve(mode, file, args[:-1], env) __all__.extend(["spawnl", "spawnle"]) if _exists("spawnvp"): # At the moment, Windows doesn't implement spawnvp[e], # so it won't have spawnlp[e] either. def spawnlp(mode, file, *args): """spawnlp(mode, file, *args) -> integer Execute file (which is looked for along $PATH) with arguments from args in a subprocess with the supplied environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return spawnvp(mode, file, args) def spawnlpe(mode, file, *args): """spawnlpe(mode, file, *args, env) -> integer Execute file (which is looked for along $PATH) with arguments from args in a subprocess with the supplied environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ env = args[-1] return spawnvpe(mode, file, args[:-1], env) __all__.extend(["spawnlp", "spawnlpe"]) # VxWorks has no user space shell provided. As a result, running # command in a shell can't be supported. if sys.platform != 'vxworks': # Supply os.popen() def popen(cmd, mode="r", buffering=-1): if not isinstance(cmd, str): raise TypeError("invalid cmd type (%s, expected string)" % type(cmd)) if mode not in ("r", "w"): raise ValueError("invalid mode %r" % mode) if buffering == 0 or buffering is None: raise ValueError("popen() does not support unbuffered streams") import subprocess if mode == "r": proc = subprocess.Popen(cmd, shell=True, text=True, stdout=subprocess.PIPE, bufsize=buffering) return _wrap_close(proc.stdout, proc) else: proc = subprocess.Popen(cmd, shell=True, text=True, stdin=subprocess.PIPE, bufsize=buffering) return _wrap_close(proc.stdin, proc) # Helper for popen() -- a proxy for a file whose close waits for the process class _wrap_close: def __init__(self, stream, proc): self._stream = stream self._proc = proc def close(self): self._stream.close() returncode = self._proc.wait() if returncode == 0: return None if name == 'nt': return returncode else: return returncode << 8 # Shift left to match old behavior def __enter__(self): return self def __exit__(self, *args): self.close() def __getattr__(self, name): return getattr(self._stream, name) def __iter__(self): return iter(self._stream) __all__.append("popen") # Supply os.fdopen() def fdopen(fd, mode="r", buffering=-1, encoding=None, *args, **kwargs): if not isinstance(fd, int): raise TypeError("invalid fd type (%s, expected integer)" % type(fd)) import io if "b" not in mode: encoding = io.text_encoding(encoding) return io.open(fd, mode, buffering, encoding, *args, **kwargs) # For testing purposes, make sure the function is available when the C # implementation exists. def _fspath(path): """Return the path representation of a path-like object. If str or bytes is passed in, it is returned unchanged. Otherwise the os.PathLike interface is used to get the path representation. If the path representation is not str or bytes, TypeError is raised. If the provided path is not str, bytes, or os.PathLike, TypeError is raised. """ if isinstance(path, (str, bytes)): return path # Work from the object's type to match method resolution of other magic # methods. path_type = type(path) try: path_repr = path_type.__fspath__(path) except AttributeError: if hasattr(path_type, '__fspath__'): raise else: raise TypeError("expected str, bytes or os.PathLike object, " "not " + path_type.__name__) if isinstance(path_repr, (str, bytes)): return path_repr else: raise TypeError("expected {}.__fspath__() to return str or bytes, " "not {}".format(path_type.__name__, type(path_repr).__name__)) # If there is no C implementation, make the pure Python version the # implementation as transparently as possible. if not _exists('fspath'): fspath = _fspath fspath.__name__ = "fspath" class PathLike(abc.ABC): """Abstract base class for implementing the file system path protocol.""" @abc.abstractmethod def __fspath__(self): """Return the file system path representation of the object.""" raise NotImplementedError @classmethod def __subclasshook__(cls, subclass): if cls is PathLike: return _check_methods(subclass, '__fspath__') return NotImplemented __class_getitem__ = classmethod(GenericAlias) if name == 'nt': class _AddedDllDirectory: def __init__(self, path, cookie, remove_dll_directory): self.path = path self._cookie = cookie self._remove_dll_directory = remove_dll_directory def close(self): self._remove_dll_directory(self._cookie) self.path = None def __enter__(self): return self def __exit__(self, *args): self.close() def __repr__(self): if self.path: return "<AddedDllDirectory({!r})>".format(self.path) return "<AddedDllDirectory()>" def add_dll_directory(path): """Add a path to the DLL search path. This search path is used when resolving dependencies for imported extension modules (the module itself is resolved through sys.path), and also by ctypes. Remove the directory by calling close() on the returned object or using it in a with statement. """ import nt cookie = nt._add_dll_directory(path) return _AddedDllDirectory( path, cookie, nt._remove_dll_directory )