%PDF- %PDF-
Direktori : /usr/lib/modules/6.8.0-45-generic/build/include/math-emu/ |
Current File : //usr/lib/modules/6.8.0-45-generic/build/include/math-emu/op-common.h |
/* Software floating-point emulation. Common operations. Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Richard Henderson (rth@cygnus.com), Jakub Jelinek (jj@ultra.linux.cz), David S. Miller (davem@redhat.com) and Peter Maydell (pmaydell@chiark.greenend.org.uk). The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef __MATH_EMU_OP_COMMON_H__ #define __MATH_EMU_OP_COMMON_H__ #define _FP_DECL(wc, X) \ _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0; \ _FP_FRAC_DECL_##wc(X) /* * Finish truly unpacking a native fp value by classifying the kind * of fp value and normalizing both the exponent and the fraction. */ #define _FP_UNPACK_CANONICAL(fs, wc, X) \ do { \ switch (X##_e) \ { \ default: \ _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs; \ _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \ X##_e -= _FP_EXPBIAS_##fs; \ X##_c = FP_CLS_NORMAL; \ break; \ \ case 0: \ if (_FP_FRAC_ZEROP_##wc(X)) \ X##_c = FP_CLS_ZERO; \ else \ { \ /* a denormalized number */ \ _FP_I_TYPE _shift; \ _FP_FRAC_CLZ_##wc(_shift, X); \ _shift -= _FP_FRACXBITS_##fs; \ _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \ X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \ X##_c = FP_CLS_NORMAL; \ FP_SET_EXCEPTION(FP_EX_DENORM); \ if (FP_DENORM_ZERO) \ { \ FP_SET_EXCEPTION(FP_EX_INEXACT); \ X##_c = FP_CLS_ZERO; \ } \ } \ break; \ \ case _FP_EXPMAX_##fs: \ if (_FP_FRAC_ZEROP_##wc(X)) \ X##_c = FP_CLS_INF; \ else \ { \ X##_c = FP_CLS_NAN; \ /* Check for signaling NaN */ \ if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \ FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_SNAN); \ } \ break; \ } \ } while (0) /* * Before packing the bits back into the native fp result, take care * of such mundane things as rounding and overflow. Also, for some * kinds of fp values, the original parts may not have been fully * extracted -- but that is ok, we can regenerate them now. */ #define _FP_PACK_CANONICAL(fs, wc, X) \ do { \ switch (X##_c) \ { \ case FP_CLS_NORMAL: \ X##_e += _FP_EXPBIAS_##fs; \ if (X##_e > 0) \ { \ _FP_ROUND(wc, X); \ if (_FP_FRAC_OVERP_##wc(fs, X)) \ { \ _FP_FRAC_CLEAR_OVERP_##wc(fs, X); \ X##_e++; \ } \ _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \ if (X##_e >= _FP_EXPMAX_##fs) \ { \ /* overflow */ \ switch (FP_ROUNDMODE) \ { \ case FP_RND_NEAREST: \ X##_c = FP_CLS_INF; \ break; \ case FP_RND_PINF: \ if (!X##_s) X##_c = FP_CLS_INF; \ break; \ case FP_RND_MINF: \ if (X##_s) X##_c = FP_CLS_INF; \ break; \ } \ if (X##_c == FP_CLS_INF) \ { \ /* Overflow to infinity */ \ X##_e = _FP_EXPMAX_##fs; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ } \ else \ { \ /* Overflow to maximum normal */ \ X##_e = _FP_EXPMAX_##fs - 1; \ _FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc); \ } \ FP_SET_EXCEPTION(FP_EX_OVERFLOW); \ FP_SET_EXCEPTION(FP_EX_INEXACT); \ } \ } \ else \ { \ /* we've got a denormalized number */ \ X##_e = -X##_e + 1; \ if (X##_e <= _FP_WFRACBITS_##fs) \ { \ _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \ if (_FP_FRAC_HIGH_##fs(X) \ & (_FP_OVERFLOW_##fs >> 1)) \ { \ X##_e = 1; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ } \ else \ { \ _FP_ROUND(wc, X); \ if (_FP_FRAC_HIGH_##fs(X) \ & (_FP_OVERFLOW_##fs >> 1)) \ { \ X##_e = 1; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ FP_SET_EXCEPTION(FP_EX_INEXACT); \ } \ else \ { \ X##_e = 0; \ _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \ } \ } \ if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) || \ (FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW)) \ FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \ } \ else \ { \ /* underflow to zero */ \ X##_e = 0; \ if (!_FP_FRAC_ZEROP_##wc(X)) \ { \ _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \ _FP_ROUND(wc, X); \ _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS); \ } \ FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \ } \ } \ break; \ \ case FP_CLS_ZERO: \ X##_e = 0; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ break; \ \ case FP_CLS_INF: \ X##_e = _FP_EXPMAX_##fs; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ break; \ \ case FP_CLS_NAN: \ X##_e = _FP_EXPMAX_##fs; \ if (!_FP_KEEPNANFRACP) \ { \ _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \ X##_s = _FP_NANSIGN_##fs; \ } \ else \ _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs; \ break; \ } \ } while (0) /* This one accepts raw argument and not cooked, returns * 1 if X is a signaling NaN. */ #define _FP_ISSIGNAN(fs, wc, X) \ ({ \ int __ret = 0; \ if (X##_e == _FP_EXPMAX_##fs) \ { \ if (!_FP_FRAC_ZEROP_##wc(X) \ && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \ __ret = 1; \ } \ __ret; \ }) /* * Main addition routine. The input values should be cooked. */ #define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) \ do { \ switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ { \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ { \ /* shift the smaller number so that its exponent matches the larger */ \ _FP_I_TYPE diff = X##_e - Y##_e; \ \ if (diff < 0) \ { \ diff = -diff; \ if (diff <= _FP_WFRACBITS_##fs) \ _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \ else if (!_FP_FRAC_ZEROP_##wc(X)) \ _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \ R##_e = Y##_e; \ } \ else \ { \ if (diff > 0) \ { \ if (diff <= _FP_WFRACBITS_##fs) \ _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \ else if (!_FP_FRAC_ZEROP_##wc(Y)) \ _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \ } \ R##_e = X##_e; \ } \ \ R##_c = FP_CLS_NORMAL; \ \ if (X##_s == Y##_s) \ { \ R##_s = X##_s; \ _FP_FRAC_ADD_##wc(R, X, Y); \ if (_FP_FRAC_OVERP_##wc(fs, R)) \ { \ _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ R##_e++; \ } \ } \ else \ { \ R##_s = X##_s; \ _FP_FRAC_SUB_##wc(R, X, Y); \ if (_FP_FRAC_ZEROP_##wc(R)) \ { \ /* return an exact zero */ \ if (FP_ROUNDMODE == FP_RND_MINF) \ R##_s |= Y##_s; \ else \ R##_s &= Y##_s; \ R##_c = FP_CLS_ZERO; \ } \ else \ { \ if (_FP_FRAC_NEGP_##wc(R)) \ { \ _FP_FRAC_SUB_##wc(R, Y, X); \ R##_s = Y##_s; \ } \ \ /* renormalize after subtraction */ \ _FP_FRAC_CLZ_##wc(diff, R); \ diff -= _FP_WFRACXBITS_##fs; \ if (diff) \ { \ R##_e -= diff; \ _FP_FRAC_SLL_##wc(R, diff); \ } \ } \ } \ break; \ } \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ _FP_CHOOSENAN(fs, wc, R, X, Y, OP); \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ R##_e = X##_e; \ fallthrough; \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ _FP_FRAC_COPY_##wc(R, X); \ R##_s = X##_s; \ R##_c = X##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ R##_e = Y##_e; \ fallthrough; \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ _FP_FRAC_COPY_##wc(R, Y); \ R##_s = Y##_s; \ R##_c = Y##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ if (X##_s != Y##_s) \ { \ /* +INF + -INF => NAN */ \ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ R##_s = _FP_NANSIGN_##fs; \ R##_c = FP_CLS_NAN; \ FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ISI); \ break; \ } \ fallthrough; \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ R##_s = X##_s; \ R##_c = FP_CLS_INF; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ R##_s = Y##_s; \ R##_c = FP_CLS_INF; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ /* make sure the sign is correct */ \ if (FP_ROUNDMODE == FP_RND_MINF) \ R##_s = X##_s | Y##_s; \ else \ R##_s = X##_s & Y##_s; \ R##_c = FP_CLS_ZERO; \ break; \ \ default: \ abort(); \ } \ } while (0) #define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+') #define _FP_SUB(fs, wc, R, X, Y) \ do { \ if (Y##_c != FP_CLS_NAN) Y##_s ^= 1; \ _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-'); \ } while (0) /* * Main negation routine. FIXME -- when we care about setting exception * bits reliably, this will not do. We should examine all of the fp classes. */ #define _FP_NEG(fs, wc, R, X) \ do { \ _FP_FRAC_COPY_##wc(R, X); \ R##_c = X##_c; \ R##_e = X##_e; \ R##_s = 1 ^ X##_s; \ } while (0) /* * Main multiplication routine. The input values should be cooked. */ #define _FP_MUL(fs, wc, R, X, Y) \ do { \ R##_s = X##_s ^ Y##_s; \ switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ { \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ R##_c = FP_CLS_NORMAL; \ R##_e = X##_e + Y##_e + 1; \ \ _FP_MUL_MEAT_##fs(R,X,Y); \ \ if (_FP_FRAC_OVERP_##wc(fs, R)) \ _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ else \ R##_e--; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ _FP_CHOOSENAN(fs, wc, R, X, Y, '*'); \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ R##_s = X##_s; \ fallthrough; \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ _FP_FRAC_COPY_##wc(R, X); \ R##_c = X##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ R##_s = Y##_s; \ fallthrough; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ _FP_FRAC_COPY_##wc(R, Y); \ R##_c = Y##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ R##_s = _FP_NANSIGN_##fs; \ R##_c = FP_CLS_NAN; \ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IMZ);\ break; \ \ default: \ abort(); \ } \ } while (0) /* * Main division routine. The input values should be cooked. */ #define _FP_DIV(fs, wc, R, X, Y) \ do { \ R##_s = X##_s ^ Y##_s; \ switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ { \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ R##_c = FP_CLS_NORMAL; \ R##_e = X##_e - Y##_e; \ \ _FP_DIV_MEAT_##fs(R,X,Y); \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ _FP_CHOOSENAN(fs, wc, R, X, Y, '/'); \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ R##_s = X##_s; \ _FP_FRAC_COPY_##wc(R, X); \ R##_c = X##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ R##_s = Y##_s; \ _FP_FRAC_COPY_##wc(R, Y); \ R##_c = Y##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ R##_c = FP_CLS_ZERO; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ FP_SET_EXCEPTION(FP_EX_DIVZERO); \ fallthrough; \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ R##_c = FP_CLS_INF; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ R##_s = _FP_NANSIGN_##fs; \ R##_c = FP_CLS_NAN; \ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IDI);\ break; \ \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ R##_s = _FP_NANSIGN_##fs; \ R##_c = FP_CLS_NAN; \ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ZDZ);\ break; \ \ default: \ abort(); \ } \ } while (0) /* * Main differential comparison routine. The inputs should be raw not * cooked. The return is -1,0,1 for normal values, 2 otherwise. */ #define _FP_CMP(fs, wc, ret, X, Y, un) \ do { \ /* NANs are unordered */ \ if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ { \ ret = un; \ } \ else \ { \ int __is_zero_x; \ int __is_zero_y; \ \ __is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \ __is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \ \ if (__is_zero_x && __is_zero_y) \ ret = 0; \ else if (__is_zero_x) \ ret = Y##_s ? 1 : -1; \ else if (__is_zero_y) \ ret = X##_s ? -1 : 1; \ else if (X##_s != Y##_s) \ ret = X##_s ? -1 : 1; \ else if (X##_e > Y##_e) \ ret = X##_s ? -1 : 1; \ else if (X##_e < Y##_e) \ ret = X##_s ? 1 : -1; \ else if (_FP_FRAC_GT_##wc(X, Y)) \ ret = X##_s ? -1 : 1; \ else if (_FP_FRAC_GT_##wc(Y, X)) \ ret = X##_s ? 1 : -1; \ else \ ret = 0; \ } \ } while (0) /* Simplification for strict equality. */ #define _FP_CMP_EQ(fs, wc, ret, X, Y) \ do { \ /* NANs are unordered */ \ if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ { \ ret = 1; \ } \ else \ { \ ret = !(X##_e == Y##_e \ && _FP_FRAC_EQ_##wc(X, Y) \ && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \ } \ } while (0) /* * Main square root routine. The input value should be cooked. */ #define _FP_SQRT(fs, wc, R, X) \ do { \ _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \ _FP_W_TYPE q; \ switch (X##_c) \ { \ case FP_CLS_NAN: \ _FP_FRAC_COPY_##wc(R, X); \ R##_s = X##_s; \ R##_c = FP_CLS_NAN; \ break; \ case FP_CLS_INF: \ if (X##_s) \ { \ R##_s = _FP_NANSIGN_##fs; \ R##_c = FP_CLS_NAN; /* NAN */ \ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ FP_SET_EXCEPTION(FP_EX_INVALID); \ } \ else \ { \ R##_s = 0; \ R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \ } \ break; \ case FP_CLS_ZERO: \ R##_s = X##_s; \ R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \ break; \ case FP_CLS_NORMAL: \ R##_s = 0; \ if (X##_s) \ { \ R##_c = FP_CLS_NAN; /* sNAN */ \ R##_s = _FP_NANSIGN_##fs; \ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ FP_SET_EXCEPTION(FP_EX_INVALID); \ break; \ } \ R##_c = FP_CLS_NORMAL; \ if (X##_e & 1) \ _FP_FRAC_SLL_##wc(X, 1); \ R##_e = X##_e >> 1; \ _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \ _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \ q = _FP_OVERFLOW_##fs >> 1; \ _FP_SQRT_MEAT_##wc(R, S, T, X, q); \ } \ } while (0) /* * Convert from FP to integer */ /* RSIGNED can have following values: * 0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus * the result is either 0 or (2^rsize)-1 depending on the sign in such case. * 1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending * on the sign in such case. * 2: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is * set plus the result is truncated to fit into destination. * -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending * on the sign in such case. */ #define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \ do { \ switch (X##_c) \ { \ case FP_CLS_NORMAL: \ if (X##_e < 0) \ { \ FP_SET_EXCEPTION(FP_EX_INEXACT); \ fallthrough; \ case FP_CLS_ZERO: \ r = 0; \ } \ else if (X##_e >= rsize - (rsigned > 0 || X##_s) \ || (!rsigned && X##_s)) \ { /* overflow */ \ fallthrough; \ case FP_CLS_NAN: \ case FP_CLS_INF: \ if (rsigned == 2) \ { \ if (X##_c != FP_CLS_NORMAL \ || X##_e >= rsize - 1 + _FP_WFRACBITS_##fs) \ r = 0; \ else \ { \ _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \ _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ } \ } \ else if (rsigned) \ { \ r = 1; \ r <<= rsize - 1; \ r -= 1 - X##_s; \ } \ else \ { \ r = 0; \ if (!X##_s) \ r = ~r; \ } \ FP_SET_EXCEPTION(FP_EX_INVALID); \ } \ else \ { \ if (_FP_W_TYPE_SIZE*wc < rsize) \ { \ _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ r <<= X##_e - _FP_WFRACBITS_##fs; \ } \ else \ { \ if (X##_e >= _FP_WFRACBITS_##fs) \ _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \ else if (X##_e < _FP_WFRACBITS_##fs - 1) \ { \ _FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2), \ _FP_WFRACBITS_##fs); \ if (_FP_FRAC_LOW_##wc(X) & 1) \ FP_SET_EXCEPTION(FP_EX_INEXACT); \ _FP_FRAC_SRL_##wc(X, 1); \ } \ _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ } \ if (rsigned && X##_s) \ r = -r; \ } \ break; \ } \ } while (0) #define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned) \ do { \ r = 0; \ switch (X##_c) \ { \ case FP_CLS_NORMAL: \ if (X##_e >= _FP_FRACBITS_##fs - 1) \ { \ if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs) \ { \ if (X##_e >= _FP_WFRACBITS_##fs - 1) \ { \ _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ r <<= X##_e - _FP_WFRACBITS_##fs + 1; \ } \ else \ { \ _FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e \ + _FP_FRACBITS_##fs - 1); \ _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ } \ } \ } \ else \ { \ int _lz0, _lz1; \ if (X##_e <= -_FP_WORKBITS - 1) \ _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \ else \ _FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e, \ _FP_WFRACBITS_##fs); \ _FP_FRAC_CLZ_##wc(_lz0, X); \ _FP_ROUND(wc, X); \ _FP_FRAC_CLZ_##wc(_lz1, X); \ if (_lz1 < _lz0) \ X##_e++; /* For overflow detection. */ \ _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \ _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ } \ if (rsigned && X##_s) \ r = -r; \ if (X##_e >= rsize - (rsigned > 0 || X##_s) \ || (!rsigned && X##_s)) \ { /* overflow */ \ fallthrough; \ case FP_CLS_NAN: \ case FP_CLS_INF: \ if (!rsigned) \ { \ r = 0; \ if (!X##_s) \ r = ~r; \ } \ else if (rsigned != 2) \ { \ r = 1; \ r <<= rsize - 1; \ r -= 1 - X##_s; \ } \ FP_SET_EXCEPTION(FP_EX_INVALID); \ } \ break; \ case FP_CLS_ZERO: \ break; \ } \ } while (0) #define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \ do { \ if (r) \ { \ unsigned rtype ur_; \ X##_c = FP_CLS_NORMAL; \ \ if ((X##_s = (r < 0))) \ ur_ = (unsigned rtype) -r; \ else \ ur_ = (unsigned rtype) r; \ (void) (((rsize) <= _FP_W_TYPE_SIZE) \ ? ({ __FP_CLZ(X##_e, ur_); }) \ : ({ \ __FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE), \ (_FP_W_TYPE)ur_); \ })); \ if (rsize < _FP_W_TYPE_SIZE) \ X##_e -= (_FP_W_TYPE_SIZE - rsize); \ X##_e = rsize - X##_e - 1; \ \ if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs <= X##_e) \ __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\ _FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize); \ if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0) \ _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \ } \ else \ { \ X##_c = FP_CLS_ZERO, X##_s = 0; \ } \ } while (0) #define FP_CONV(dfs,sfs,dwc,swc,D,S) \ do { \ _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \ D##_e = S##_e; \ D##_c = S##_c; \ D##_s = S##_s; \ } while (0) /* * Helper primitives. */ /* Count leading zeros in a word. */ #ifndef __FP_CLZ #if _FP_W_TYPE_SIZE < 64 /* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */ #define __FP_CLZ(r, x) \ do { \ _FP_W_TYPE _t = (x); \ r = _FP_W_TYPE_SIZE - 1; \ if (_t > 0xffff) r -= 16; \ if (_t > 0xffff) _t >>= 16; \ if (_t > 0xff) r -= 8; \ if (_t > 0xff) _t >>= 8; \ if (_t & 0xf0) r -= 4; \ if (_t & 0xf0) _t >>= 4; \ if (_t & 0xc) r -= 2; \ if (_t & 0xc) _t >>= 2; \ if (_t & 0x2) r -= 1; \ } while (0) #else /* not _FP_W_TYPE_SIZE < 64 */ #define __FP_CLZ(r, x) \ do { \ _FP_W_TYPE _t = (x); \ r = _FP_W_TYPE_SIZE - 1; \ if (_t > 0xffffffff) r -= 32; \ if (_t > 0xffffffff) _t >>= 32; \ if (_t > 0xffff) r -= 16; \ if (_t > 0xffff) _t >>= 16; \ if (_t > 0xff) r -= 8; \ if (_t > 0xff) _t >>= 8; \ if (_t & 0xf0) r -= 4; \ if (_t & 0xf0) _t >>= 4; \ if (_t & 0xc) r -= 2; \ if (_t & 0xc) _t >>= 2; \ if (_t & 0x2) r -= 1; \ } while (0) #endif /* not _FP_W_TYPE_SIZE < 64 */ #endif /* ndef __FP_CLZ */ #define _FP_DIV_HELP_imm(q, r, n, d) \ do { \ q = n / d, r = n % d; \ } while (0) #endif /* __MATH_EMU_OP_COMMON_H__ */