%PDF- %PDF-
Direktori : /usr/lib/modules/6.8.0-45-generic/build/include/linux/ |
Current File : //usr/lib/modules/6.8.0-45-generic/build/include/linux/skbuff.h |
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Definitions for the 'struct sk_buff' memory handlers. * * Authors: * Alan Cox, <gw4pts@gw4pts.ampr.org> * Florian La Roche, <rzsfl@rz.uni-sb.de> */ #ifndef _LINUX_SKBUFF_H #define _LINUX_SKBUFF_H #include <linux/kernel.h> #include <linux/compiler.h> #include <linux/time.h> #include <linux/bug.h> #include <linux/bvec.h> #include <linux/cache.h> #include <linux/rbtree.h> #include <linux/socket.h> #include <linux/refcount.h> #include <linux/atomic.h> #include <asm/types.h> #include <linux/spinlock.h> #include <net/checksum.h> #include <linux/rcupdate.h> #include <linux/dma-mapping.h> #include <linux/netdev_features.h> #include <net/flow_dissector.h> #include <linux/in6.h> #include <linux/if_packet.h> #include <linux/llist.h> #include <net/flow.h> #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <linux/netfilter/nf_conntrack_common.h> #endif #include <net/net_debug.h> #include <net/dropreason-core.h> /** * DOC: skb checksums * * The interface for checksum offload between the stack and networking drivers * is as follows... * * IP checksum related features * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * Drivers advertise checksum offload capabilities in the features of a device. * From the stack's point of view these are capabilities offered by the driver. * A driver typically only advertises features that it is capable of offloading * to its device. * * .. flat-table:: Checksum related device features * :widths: 1 10 * * * - %NETIF_F_HW_CSUM * - The driver (or its device) is able to compute one * IP (one's complement) checksum for any combination * of protocols or protocol layering. The checksum is * computed and set in a packet per the CHECKSUM_PARTIAL * interface (see below). * * * - %NETIF_F_IP_CSUM * - Driver (device) is only able to checksum plain * TCP or UDP packets over IPv4. These are specifically * unencapsulated packets of the form IPv4|TCP or * IPv4|UDP where the Protocol field in the IPv4 header * is TCP or UDP. The IPv4 header may contain IP options. * This feature cannot be set in features for a device * with NETIF_F_HW_CSUM also set. This feature is being * DEPRECATED (see below). * * * - %NETIF_F_IPV6_CSUM * - Driver (device) is only able to checksum plain * TCP or UDP packets over IPv6. These are specifically * unencapsulated packets of the form IPv6|TCP or * IPv6|UDP where the Next Header field in the IPv6 * header is either TCP or UDP. IPv6 extension headers * are not supported with this feature. This feature * cannot be set in features for a device with * NETIF_F_HW_CSUM also set. This feature is being * DEPRECATED (see below). * * * - %NETIF_F_RXCSUM * - Driver (device) performs receive checksum offload. * This flag is only used to disable the RX checksum * feature for a device. The stack will accept receive * checksum indication in packets received on a device * regardless of whether NETIF_F_RXCSUM is set. * * Checksumming of received packets by device * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * Indication of checksum verification is set in &sk_buff.ip_summed. * Possible values are: * * - %CHECKSUM_NONE * * Device did not checksum this packet e.g. due to lack of capabilities. * The packet contains full (though not verified) checksum in packet but * not in skb->csum. Thus, skb->csum is undefined in this case. * * - %CHECKSUM_UNNECESSARY * * The hardware you're dealing with doesn't calculate the full checksum * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY * if their checksums are okay. &sk_buff.csum is still undefined in this case * though. A driver or device must never modify the checksum field in the * packet even if checksum is verified. * * %CHECKSUM_UNNECESSARY is applicable to following protocols: * * - TCP: IPv6 and IPv4. * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a * zero UDP checksum for either IPv4 or IPv6, the networking stack * may perform further validation in this case. * - GRE: only if the checksum is present in the header. * - SCTP: indicates the CRC in SCTP header has been validated. * - FCOE: indicates the CRC in FC frame has been validated. * * &sk_buff.csum_level indicates the number of consecutive checksums found in * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet * and a device is able to verify the checksums for UDP (possibly zero), * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to * two. If the device were only able to verify the UDP checksum and not * GRE, either because it doesn't support GRE checksum or because GRE * checksum is bad, skb->csum_level would be set to zero (TCP checksum is * not considered in this case). * * - %CHECKSUM_COMPLETE * * This is the most generic way. The device supplied checksum of the _whole_ * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the * hardware doesn't need to parse L3/L4 headers to implement this. * * Notes: * * - Even if device supports only some protocols, but is able to produce * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. * * - %CHECKSUM_PARTIAL * * A checksum is set up to be offloaded to a device as described in the * output description for CHECKSUM_PARTIAL. This may occur on a packet * received directly from another Linux OS, e.g., a virtualized Linux kernel * on the same host, or it may be set in the input path in GRO or remote * checksum offload. For the purposes of checksum verification, the checksum * referred to by skb->csum_start + skb->csum_offset and any preceding * checksums in the packet are considered verified. Any checksums in the * packet that are after the checksum being offloaded are not considered to * be verified. * * Checksumming on transmit for non-GSO * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. * Values are: * * - %CHECKSUM_PARTIAL * * The driver is required to checksum the packet as seen by hard_start_xmit() * from &sk_buff.csum_start up to the end, and to record/write the checksum at * offset &sk_buff.csum_start + &sk_buff.csum_offset. * A driver may verify that the * csum_start and csum_offset values are valid values given the length and * offset of the packet, but it should not attempt to validate that the * checksum refers to a legitimate transport layer checksum -- it is the * purview of the stack to validate that csum_start and csum_offset are set * correctly. * * When the stack requests checksum offload for a packet, the driver MUST * ensure that the checksum is set correctly. A driver can either offload the * checksum calculation to the device, or call skb_checksum_help (in the case * that the device does not support offload for a particular checksum). * * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate * checksum offload capability. * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based * on network device checksumming capabilities: if a packet does not match * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of * &sk_buff.csum_not_inet, see :ref:`crc`) * is called to resolve the checksum. * * - %CHECKSUM_NONE * * The skb was already checksummed by the protocol, or a checksum is not * required. * * - %CHECKSUM_UNNECESSARY * * This has the same meaning as CHECKSUM_NONE for checksum offload on * output. * * - %CHECKSUM_COMPLETE * * Not used in checksum output. If a driver observes a packet with this value * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. * * .. _crc: * * Non-IP checksum (CRC) offloads * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * .. flat-table:: * :widths: 1 10 * * * - %NETIF_F_SCTP_CRC * - This feature indicates that a device is capable of * offloading the SCTP CRC in a packet. To perform this offload the stack * will set csum_start and csum_offset accordingly, set ip_summed to * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. * A driver that supports both IP checksum offload and SCTP CRC32c offload * must verify which offload is configured for a packet by testing the * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. * * * - %NETIF_F_FCOE_CRC * - This feature indicates that a device is capable of offloading the FCOE * CRC in a packet. To perform this offload the stack will set ip_summed * to %CHECKSUM_PARTIAL and set csum_start and csum_offset * accordingly. Note that there is no indication in the skbuff that the * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports * both IP checksum offload and FCOE CRC offload must verify which offload * is configured for a packet, presumably by inspecting packet headers. * * Checksumming on output with GSO * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * In the case of a GSO packet (skb_is_gso() is true), checksum offload * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as * part of the GSO operation is implied. If a checksum is being offloaded * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and * csum_offset are set to refer to the outermost checksum being offloaded * (two offloaded checksums are possible with UDP encapsulation). */ /* Don't change this without changing skb_csum_unnecessary! */ #define CHECKSUM_NONE 0 #define CHECKSUM_UNNECESSARY 1 #define CHECKSUM_COMPLETE 2 #define CHECKSUM_PARTIAL 3 /* Maximum value in skb->csum_level */ #define SKB_MAX_CSUM_LEVEL 3 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) #define SKB_WITH_OVERHEAD(X) \ ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) /* For X bytes available in skb->head, what is the minimal * allocation needed, knowing struct skb_shared_info needs * to be aligned. */ #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) #define SKB_MAX_ORDER(X, ORDER) \ SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) /* return minimum truesize of one skb containing X bytes of data */ #define SKB_TRUESIZE(X) ((X) + \ SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) struct ahash_request; struct net_device; struct scatterlist; struct pipe_inode_info; struct iov_iter; struct napi_struct; struct bpf_prog; union bpf_attr; struct skb_ext; struct ts_config; #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) struct nf_bridge_info { enum { BRNF_PROTO_UNCHANGED, BRNF_PROTO_8021Q, BRNF_PROTO_PPPOE } orig_proto:8; u8 pkt_otherhost:1; u8 in_prerouting:1; u8 bridged_dnat:1; u8 sabotage_in_done:1; __u16 frag_max_size; int physinif; /* always valid & non-NULL from FORWARD on, for physdev match */ struct net_device *physoutdev; union { /* prerouting: detect dnat in orig/reply direction */ __be32 ipv4_daddr; struct in6_addr ipv6_daddr; /* after prerouting + nat detected: store original source * mac since neigh resolution overwrites it, only used while * skb is out in neigh layer. */ char neigh_header[8]; }; }; #endif #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) /* Chain in tc_skb_ext will be used to share the tc chain with * ovs recirc_id. It will be set to the current chain by tc * and read by ovs to recirc_id. */ struct tc_skb_ext { union { u64 act_miss_cookie; __u32 chain; }; __u16 mru; __u16 zone; u8 post_ct:1; u8 post_ct_snat:1; u8 post_ct_dnat:1; u8 act_miss:1; /* Set if act_miss_cookie is used */ u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */ }; #endif struct sk_buff_head { /* These two members must be first to match sk_buff. */ struct_group_tagged(sk_buff_list, list, struct sk_buff *next; struct sk_buff *prev; ); __u32 qlen; spinlock_t lock; }; struct sk_buff; #ifndef CONFIG_MAX_SKB_FRAGS # define CONFIG_MAX_SKB_FRAGS 17 #endif #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS extern int sysctl_max_skb_frags; /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to * segment using its current segmentation instead. */ #define GSO_BY_FRAGS 0xFFFF typedef struct bio_vec skb_frag_t; /** * skb_frag_size() - Returns the size of a skb fragment * @frag: skb fragment */ static inline unsigned int skb_frag_size(const skb_frag_t *frag) { return frag->bv_len; } /** * skb_frag_size_set() - Sets the size of a skb fragment * @frag: skb fragment * @size: size of fragment */ static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) { frag->bv_len = size; } /** * skb_frag_size_add() - Increments the size of a skb fragment by @delta * @frag: skb fragment * @delta: value to add */ static inline void skb_frag_size_add(skb_frag_t *frag, int delta) { frag->bv_len += delta; } /** * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta * @frag: skb fragment * @delta: value to subtract */ static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) { frag->bv_len -= delta; } /** * skb_frag_must_loop - Test if %p is a high memory page * @p: fragment's page */ static inline bool skb_frag_must_loop(struct page *p) { #if defined(CONFIG_HIGHMEM) if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) return true; #endif return false; } /** * skb_frag_foreach_page - loop over pages in a fragment * * @f: skb frag to operate on * @f_off: offset from start of f->bv_page * @f_len: length from f_off to loop over * @p: (temp var) current page * @p_off: (temp var) offset from start of current page, * non-zero only on first page. * @p_len: (temp var) length in current page, * < PAGE_SIZE only on first and last page. * @copied: (temp var) length so far, excluding current p_len. * * A fragment can hold a compound page, in which case per-page * operations, notably kmap_atomic, must be called for each * regular page. */ #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ p_off = (f_off) & (PAGE_SIZE - 1), \ p_len = skb_frag_must_loop(p) ? \ min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ copied = 0; \ copied < f_len; \ copied += p_len, p++, p_off = 0, \ p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ /** * struct skb_shared_hwtstamps - hardware time stamps * @hwtstamp: hardware time stamp transformed into duration * since arbitrary point in time * @netdev_data: address/cookie of network device driver used as * reference to actual hardware time stamp * * Software time stamps generated by ktime_get_real() are stored in * skb->tstamp. * * hwtstamps can only be compared against other hwtstamps from * the same device. * * This structure is attached to packets as part of the * &skb_shared_info. Use skb_hwtstamps() to get a pointer. */ struct skb_shared_hwtstamps { union { ktime_t hwtstamp; void *netdev_data; }; }; /* Definitions for tx_flags in struct skb_shared_info */ enum { /* generate hardware time stamp */ SKBTX_HW_TSTAMP = 1 << 0, /* generate software time stamp when queueing packet to NIC */ SKBTX_SW_TSTAMP = 1 << 1, /* device driver is going to provide hardware time stamp */ SKBTX_IN_PROGRESS = 1 << 2, /* generate hardware time stamp based on cycles if supported */ SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, /* generate wifi status information (where possible) */ SKBTX_WIFI_STATUS = 1 << 4, /* determine hardware time stamp based on time or cycles */ SKBTX_HW_TSTAMP_NETDEV = 1 << 5, /* generate software time stamp when entering packet scheduling */ SKBTX_SCHED_TSTAMP = 1 << 6, }; #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ SKBTX_SCHED_TSTAMP) #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ SKBTX_HW_TSTAMP_USE_CYCLES | \ SKBTX_ANY_SW_TSTAMP) /* Definitions for flags in struct skb_shared_info */ enum { /* use zcopy routines */ SKBFL_ZEROCOPY_ENABLE = BIT(0), /* This indicates at least one fragment might be overwritten * (as in vmsplice(), sendfile() ...) * If we need to compute a TX checksum, we'll need to copy * all frags to avoid possible bad checksum */ SKBFL_SHARED_FRAG = BIT(1), /* segment contains only zerocopy data and should not be * charged to the kernel memory. */ SKBFL_PURE_ZEROCOPY = BIT(2), SKBFL_DONT_ORPHAN = BIT(3), /* page references are managed by the ubuf_info, so it's safe to * use frags only up until ubuf_info is released */ SKBFL_MANAGED_FRAG_REFS = BIT(4), }; #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) /* * The callback notifies userspace to release buffers when skb DMA is done in * lower device, the skb last reference should be 0 when calling this. * The zerocopy_success argument is true if zero copy transmit occurred, * false on data copy or out of memory error caused by data copy attempt. * The ctx field is used to track device context. * The desc field is used to track userspace buffer index. */ struct ubuf_info { void (*callback)(struct sk_buff *, struct ubuf_info *, bool zerocopy_success); refcount_t refcnt; u8 flags; }; struct ubuf_info_msgzc { struct ubuf_info ubuf; union { struct { unsigned long desc; void *ctx; }; struct { u32 id; u16 len; u16 zerocopy:1; u32 bytelen; }; }; struct mmpin { struct user_struct *user; unsigned int num_pg; } mmp; }; #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ ubuf) int mm_account_pinned_pages(struct mmpin *mmp, size_t size); void mm_unaccount_pinned_pages(struct mmpin *mmp); /* Preserve some data across TX submission and completion. * * Note, this state is stored in the driver. Extending the layout * might need some special care. */ struct xsk_tx_metadata_compl { __u64 *tx_timestamp; }; /* This data is invariant across clones and lives at * the end of the header data, ie. at skb->end. */ struct skb_shared_info { __u8 flags; __u8 meta_len; __u8 nr_frags; __u8 tx_flags; unsigned short gso_size; /* Warning: this field is not always filled in (UFO)! */ unsigned short gso_segs; struct sk_buff *frag_list; union { struct skb_shared_hwtstamps hwtstamps; struct xsk_tx_metadata_compl xsk_meta; }; unsigned int gso_type; u32 tskey; /* * Warning : all fields before dataref are cleared in __alloc_skb() */ atomic_t dataref; unsigned int xdp_frags_size; /* Intermediate layers must ensure that destructor_arg * remains valid until skb destructor */ void * destructor_arg; /* must be last field, see pskb_expand_head() */ skb_frag_t frags[MAX_SKB_FRAGS]; }; /** * DOC: dataref and headerless skbs * * Transport layers send out clones of payload skbs they hold for * retransmissions. To allow lower layers of the stack to prepend their headers * we split &skb_shared_info.dataref into two halves. * The lower 16 bits count the overall number of references. * The higher 16 bits indicate how many of the references are payload-only. * skb_header_cloned() checks if skb is allowed to add / write the headers. * * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr * (via __skb_header_release()). Any clone created from marked skb will get * &sk_buff.hdr_len populated with the available headroom. * If there's the only clone in existence it's able to modify the headroom * at will. The sequence of calls inside the transport layer is:: * * <alloc skb> * skb_reserve() * __skb_header_release() * skb_clone() * // send the clone down the stack * * This is not a very generic construct and it depends on the transport layers * doing the right thing. In practice there's usually only one payload-only skb. * Having multiple payload-only skbs with different lengths of hdr_len is not * possible. The payload-only skbs should never leave their owner. */ #define SKB_DATAREF_SHIFT 16 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) enum { SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ }; enum { SKB_GSO_TCPV4 = 1 << 0, /* This indicates the skb is from an untrusted source. */ SKB_GSO_DODGY = 1 << 1, /* This indicates the tcp segment has CWR set. */ SKB_GSO_TCP_ECN = 1 << 2, SKB_GSO_TCP_FIXEDID = 1 << 3, SKB_GSO_TCPV6 = 1 << 4, SKB_GSO_FCOE = 1 << 5, SKB_GSO_GRE = 1 << 6, SKB_GSO_GRE_CSUM = 1 << 7, SKB_GSO_IPXIP4 = 1 << 8, SKB_GSO_IPXIP6 = 1 << 9, SKB_GSO_UDP_TUNNEL = 1 << 10, SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, SKB_GSO_PARTIAL = 1 << 12, SKB_GSO_TUNNEL_REMCSUM = 1 << 13, SKB_GSO_SCTP = 1 << 14, SKB_GSO_ESP = 1 << 15, SKB_GSO_UDP = 1 << 16, SKB_GSO_UDP_L4 = 1 << 17, SKB_GSO_FRAGLIST = 1 << 18, }; #if BITS_PER_LONG > 32 #define NET_SKBUFF_DATA_USES_OFFSET 1 #endif #ifdef NET_SKBUFF_DATA_USES_OFFSET typedef unsigned int sk_buff_data_t; #else typedef unsigned char *sk_buff_data_t; #endif /** * DOC: Basic sk_buff geometry * * struct sk_buff itself is a metadata structure and does not hold any packet * data. All the data is held in associated buffers. * * &sk_buff.head points to the main "head" buffer. The head buffer is divided * into two parts: * * - data buffer, containing headers and sometimes payload; * this is the part of the skb operated on by the common helpers * such as skb_put() or skb_pull(); * - shared info (struct skb_shared_info) which holds an array of pointers * to read-only data in the (page, offset, length) format. * * Optionally &skb_shared_info.frag_list may point to another skb. * * Basic diagram may look like this:: * * --------------- * | sk_buff | * --------------- * ,--------------------------- + head * / ,----------------- + data * / / ,----------- + tail * | | | , + end * | | | | * v v v v * ----------------------------------------------- * | headroom | data | tailroom | skb_shared_info | * ----------------------------------------------- * + [page frag] * + [page frag] * + [page frag] * + [page frag] --------- * + frag_list --> | sk_buff | * --------- * */ /** * struct sk_buff - socket buffer * @next: Next buffer in list * @prev: Previous buffer in list * @tstamp: Time we arrived/left * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point * for retransmit timer * @rbnode: RB tree node, alternative to next/prev for netem/tcp * @list: queue head * @ll_node: anchor in an llist (eg socket defer_list) * @sk: Socket we are owned by * @dev: Device we arrived on/are leaving by * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL * @cb: Control buffer. Free for use by every layer. Put private vars here * @_skb_refdst: destination entry (with norefcount bit) * @len: Length of actual data * @data_len: Data length * @mac_len: Length of link layer header * @hdr_len: writable header length of cloned skb * @csum: Checksum (must include start/offset pair) * @csum_start: Offset from skb->head where checksumming should start * @csum_offset: Offset from csum_start where checksum should be stored * @priority: Packet queueing priority * @ignore_df: allow local fragmentation * @cloned: Head may be cloned (check refcnt to be sure) * @ip_summed: Driver fed us an IP checksum * @nohdr: Payload reference only, must not modify header * @pkt_type: Packet class * @fclone: skbuff clone status * @ipvs_property: skbuff is owned by ipvs * @inner_protocol_type: whether the inner protocol is * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO * @remcsum_offload: remote checksum offload is enabled * @offload_fwd_mark: Packet was L2-forwarded in hardware * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware * @tc_skip_classify: do not classify packet. set by IFB device * @tc_at_ingress: used within tc_classify to distinguish in/egress * @redirected: packet was redirected by packet classifier * @from_ingress: packet was redirected from the ingress path * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h * @peeked: this packet has been seen already, so stats have been * done for it, don't do them again * @nf_trace: netfilter packet trace flag * @protocol: Packet protocol from driver * @destructor: Destruct function * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) * @_sk_redir: socket redirection information for skmsg * @_nfct: Associated connection, if any (with nfctinfo bits) * @skb_iif: ifindex of device we arrived on * @tc_index: Traffic control index * @hash: the packet hash * @queue_mapping: Queue mapping for multiqueue devices * @head_frag: skb was allocated from page fragments, * not allocated by kmalloc() or vmalloc(). * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves * @pp_recycle: mark the packet for recycling instead of freeing (implies * page_pool support on driver) * @active_extensions: active extensions (skb_ext_id types) * @ndisc_nodetype: router type (from link layer) * @ooo_okay: allow the mapping of a socket to a queue to be changed * @l4_hash: indicate hash is a canonical 4-tuple hash over transport * ports. * @sw_hash: indicates hash was computed in software stack * @wifi_acked_valid: wifi_acked was set * @wifi_acked: whether frame was acked on wifi or not * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS * @encapsulation: indicates the inner headers in the skbuff are valid * @encap_hdr_csum: software checksum is needed * @csum_valid: checksum is already valid * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL * @csum_complete_sw: checksum was completed by software * @csum_level: indicates the number of consecutive checksums found in * the packet minus one that have been verified as * CHECKSUM_UNNECESSARY (max 3) * @dst_pending_confirm: need to confirm neighbour * @decrypted: Decrypted SKB * @slow_gro: state present at GRO time, slower prepare step required * @mono_delivery_time: When set, skb->tstamp has the * delivery_time in mono clock base (i.e. EDT). Otherwise, the * skb->tstamp has the (rcv) timestamp at ingress and * delivery_time at egress. * @napi_id: id of the NAPI struct this skb came from * @sender_cpu: (aka @napi_id) source CPU in XPS * @alloc_cpu: CPU which did the skb allocation. * @secmark: security marking * @mark: Generic packet mark * @reserved_tailroom: (aka @mark) number of bytes of free space available * at the tail of an sk_buff * @vlan_all: vlan fields (proto & tci) * @vlan_proto: vlan encapsulation protocol * @vlan_tci: vlan tag control information * @inner_protocol: Protocol (encapsulation) * @inner_ipproto: (aka @inner_protocol) stores ipproto when * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; * @inner_transport_header: Inner transport layer header (encapsulation) * @inner_network_header: Network layer header (encapsulation) * @inner_mac_header: Link layer header (encapsulation) * @transport_header: Transport layer header * @network_header: Network layer header * @mac_header: Link layer header * @kcov_handle: KCOV remote handle for remote coverage collection * @tail: Tail pointer * @end: End pointer * @head: Head of buffer * @data: Data head pointer * @truesize: Buffer size * @users: User count - see {datagram,tcp}.c * @extensions: allocated extensions, valid if active_extensions is nonzero */ struct sk_buff { union { struct { /* These two members must be first to match sk_buff_head. */ struct sk_buff *next; struct sk_buff *prev; union { struct net_device *dev; /* Some protocols might use this space to store information, * while device pointer would be NULL. * UDP receive path is one user. */ unsigned long dev_scratch; }; }; struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ struct list_head list; struct llist_node ll_node; }; struct sock *sk; union { ktime_t tstamp; u64 skb_mstamp_ns; /* earliest departure time */ }; /* * This is the control buffer. It is free to use for every * layer. Please put your private variables there. If you * want to keep them across layers you have to do a skb_clone() * first. This is owned by whoever has the skb queued ATM. */ char cb[48] __aligned(8); union { struct { unsigned long _skb_refdst; void (*destructor)(struct sk_buff *skb); }; struct list_head tcp_tsorted_anchor; #ifdef CONFIG_NET_SOCK_MSG unsigned long _sk_redir; #endif }; #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) unsigned long _nfct; #endif unsigned int len, data_len; __u16 mac_len, hdr_len; /* Following fields are _not_ copied in __copy_skb_header() * Note that queue_mapping is here mostly to fill a hole. */ __u16 queue_mapping; /* if you move cloned around you also must adapt those constants */ #ifdef __BIG_ENDIAN_BITFIELD #define CLONED_MASK (1 << 7) #else #define CLONED_MASK 1 #endif #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) /* private: */ __u8 __cloned_offset[0]; /* public: */ __u8 cloned:1, nohdr:1, fclone:2, peeked:1, head_frag:1, pfmemalloc:1, pp_recycle:1; /* page_pool recycle indicator */ #ifdef CONFIG_SKB_EXTENSIONS __u8 active_extensions; #endif /* Fields enclosed in headers group are copied * using a single memcpy() in __copy_skb_header() */ struct_group(headers, /* private: */ __u8 __pkt_type_offset[0]; /* public: */ __u8 pkt_type:3; /* see PKT_TYPE_MAX */ __u8 ignore_df:1; __u8 dst_pending_confirm:1; __u8 ip_summed:2; __u8 ooo_okay:1; /* private: */ __u8 __mono_tc_offset[0]; /* public: */ __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ #ifdef CONFIG_NET_XGRESS __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ __u8 tc_skip_classify:1; #endif __u8 remcsum_offload:1; __u8 csum_complete_sw:1; __u8 csum_level:2; __u8 inner_protocol_type:1; __u8 l4_hash:1; __u8 sw_hash:1; #ifdef CONFIG_WIRELESS __u8 wifi_acked_valid:1; __u8 wifi_acked:1; #endif __u8 no_fcs:1; /* Indicates the inner headers are valid in the skbuff. */ __u8 encapsulation:1; __u8 encap_hdr_csum:1; __u8 csum_valid:1; #ifdef CONFIG_IPV6_NDISC_NODETYPE __u8 ndisc_nodetype:2; #endif #if IS_ENABLED(CONFIG_IP_VS) __u8 ipvs_property:1; #endif #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) __u8 nf_trace:1; #endif #ifdef CONFIG_NET_SWITCHDEV __u8 offload_fwd_mark:1; __u8 offload_l3_fwd_mark:1; #endif __u8 redirected:1; #ifdef CONFIG_NET_REDIRECT __u8 from_ingress:1; #endif #ifdef CONFIG_NETFILTER_SKIP_EGRESS __u8 nf_skip_egress:1; #endif #ifdef CONFIG_TLS_DEVICE __u8 decrypted:1; #endif __u8 slow_gro:1; #if IS_ENABLED(CONFIG_IP_SCTP) __u8 csum_not_inet:1; #endif #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS) __u16 tc_index; /* traffic control index */ #endif u16 alloc_cpu; union { __wsum csum; struct { __u16 csum_start; __u16 csum_offset; }; }; __u32 priority; int skb_iif; __u32 hash; union { u32 vlan_all; struct { __be16 vlan_proto; __u16 vlan_tci; }; }; #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) union { unsigned int napi_id; unsigned int sender_cpu; }; #endif #ifdef CONFIG_NETWORK_SECMARK __u32 secmark; #endif union { __u32 mark; __u32 reserved_tailroom; }; union { __be16 inner_protocol; __u8 inner_ipproto; }; __u16 inner_transport_header; __u16 inner_network_header; __u16 inner_mac_header; __be16 protocol; __u16 transport_header; __u16 network_header; __u16 mac_header; #ifdef CONFIG_KCOV u64 kcov_handle; #endif ); /* end headers group */ /* These elements must be at the end, see alloc_skb() for details. */ sk_buff_data_t tail; sk_buff_data_t end; unsigned char *head, *data; unsigned int truesize; refcount_t users; #ifdef CONFIG_SKB_EXTENSIONS /* only usable after checking ->active_extensions != 0 */ struct skb_ext *extensions; #endif }; /* if you move pkt_type around you also must adapt those constants */ #ifdef __BIG_ENDIAN_BITFIELD #define PKT_TYPE_MAX (7 << 5) #else #define PKT_TYPE_MAX 7 #endif #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) /* if you move tc_at_ingress or mono_delivery_time * around, you also must adapt these constants. */ #ifdef __BIG_ENDIAN_BITFIELD #define SKB_MONO_DELIVERY_TIME_MASK (1 << 7) #define TC_AT_INGRESS_MASK (1 << 6) #else #define SKB_MONO_DELIVERY_TIME_MASK (1 << 0) #define TC_AT_INGRESS_MASK (1 << 1) #endif #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset) #ifdef __KERNEL__ /* * Handling routines are only of interest to the kernel */ #define SKB_ALLOC_FCLONE 0x01 #define SKB_ALLOC_RX 0x02 #define SKB_ALLOC_NAPI 0x04 /** * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves * @skb: buffer */ static inline bool skb_pfmemalloc(const struct sk_buff *skb) { return unlikely(skb->pfmemalloc); } /* * skb might have a dst pointer attached, refcounted or not. * _skb_refdst low order bit is set if refcount was _not_ taken */ #define SKB_DST_NOREF 1UL #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) /** * skb_dst - returns skb dst_entry * @skb: buffer * * Returns skb dst_entry, regardless of reference taken or not. */ static inline struct dst_entry *skb_dst(const struct sk_buff *skb) { /* If refdst was not refcounted, check we still are in a * rcu_read_lock section */ WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && !rcu_read_lock_held() && !rcu_read_lock_bh_held()); return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); } /** * skb_dst_set - sets skb dst * @skb: buffer * @dst: dst entry * * Sets skb dst, assuming a reference was taken on dst and should * be released by skb_dst_drop() */ static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) { skb->slow_gro |= !!dst; skb->_skb_refdst = (unsigned long)dst; } /** * skb_dst_set_noref - sets skb dst, hopefully, without taking reference * @skb: buffer * @dst: dst entry * * Sets skb dst, assuming a reference was not taken on dst. * If dst entry is cached, we do not take reference and dst_release * will be avoided by refdst_drop. If dst entry is not cached, we take * reference, so that last dst_release can destroy the dst immediately. */ static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) { WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); skb->slow_gro |= !!dst; skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; } /** * skb_dst_is_noref - Test if skb dst isn't refcounted * @skb: buffer */ static inline bool skb_dst_is_noref(const struct sk_buff *skb) { return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); } /* For mangling skb->pkt_type from user space side from applications * such as nft, tc, etc, we only allow a conservative subset of * possible pkt_types to be set. */ static inline bool skb_pkt_type_ok(u32 ptype) { return ptype <= PACKET_OTHERHOST; } /** * skb_napi_id - Returns the skb's NAPI id * @skb: buffer */ static inline unsigned int skb_napi_id(const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL return skb->napi_id; #else return 0; #endif } static inline bool skb_wifi_acked_valid(const struct sk_buff *skb) { #ifdef CONFIG_WIRELESS return skb->wifi_acked_valid; #else return 0; #endif } /** * skb_unref - decrement the skb's reference count * @skb: buffer * * Returns true if we can free the skb. */ static inline bool skb_unref(struct sk_buff *skb) { if (unlikely(!skb)) return false; if (likely(refcount_read(&skb->users) == 1)) smp_rmb(); else if (likely(!refcount_dec_and_test(&skb->users))) return false; return true; } void __fix_address kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); /** * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason * @skb: buffer to free */ static inline void kfree_skb(struct sk_buff *skb) { kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); } void skb_release_head_state(struct sk_buff *skb); void kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason); void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); void skb_tx_error(struct sk_buff *skb); static inline void kfree_skb_list(struct sk_buff *segs) { kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); } #ifdef CONFIG_TRACEPOINTS void consume_skb(struct sk_buff *skb); #else static inline void consume_skb(struct sk_buff *skb) { return kfree_skb(skb); } #endif void __consume_stateless_skb(struct sk_buff *skb); void __kfree_skb(struct sk_buff *skb); extern struct kmem_cache *skbuff_cache; void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, bool *fragstolen, int *delta_truesize); struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, int node); struct sk_buff *__build_skb(void *data, unsigned int frag_size); struct sk_buff *build_skb(void *data, unsigned int frag_size); struct sk_buff *build_skb_around(struct sk_buff *skb, void *data, unsigned int frag_size); void skb_attempt_defer_free(struct sk_buff *skb); struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); struct sk_buff *slab_build_skb(void *data); /** * alloc_skb - allocate a network buffer * @size: size to allocate * @priority: allocation mask * * This function is a convenient wrapper around __alloc_skb(). */ static inline struct sk_buff *alloc_skb(unsigned int size, gfp_t priority) { return __alloc_skb(size, priority, 0, NUMA_NO_NODE); } struct sk_buff *alloc_skb_with_frags(unsigned long header_len, unsigned long data_len, int max_page_order, int *errcode, gfp_t gfp_mask); struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); /* Layout of fast clones : [skb1][skb2][fclone_ref] */ struct sk_buff_fclones { struct sk_buff skb1; struct sk_buff skb2; refcount_t fclone_ref; }; /** * skb_fclone_busy - check if fclone is busy * @sk: socket * @skb: buffer * * Returns true if skb is a fast clone, and its clone is not freed. * Some drivers call skb_orphan() in their ndo_start_xmit(), * so we also check that didn't happen. */ static inline bool skb_fclone_busy(const struct sock *sk, const struct sk_buff *skb) { const struct sk_buff_fclones *fclones; fclones = container_of(skb, struct sk_buff_fclones, skb1); return skb->fclone == SKB_FCLONE_ORIG && refcount_read(&fclones->fclone_ref) > 1 && READ_ONCE(fclones->skb2.sk) == sk; } /** * alloc_skb_fclone - allocate a network buffer from fclone cache * @size: size to allocate * @priority: allocation mask * * This function is a convenient wrapper around __alloc_skb(). */ static inline struct sk_buff *alloc_skb_fclone(unsigned int size, gfp_t priority) { return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); } struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); void skb_headers_offset_update(struct sk_buff *skb, int off); int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, gfp_t gfp_mask, bool fclone); static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask) { return __pskb_copy_fclone(skb, headroom, gfp_mask, false); } int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom); struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, int newtailroom, gfp_t priority); int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, int offset, int len); int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len); int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); /** * skb_pad - zero pad the tail of an skb * @skb: buffer to pad * @pad: space to pad * * Ensure that a buffer is followed by a padding area that is zero * filled. Used by network drivers which may DMA or transfer data * beyond the buffer end onto the wire. * * May return error in out of memory cases. The skb is freed on error. */ static inline int skb_pad(struct sk_buff *skb, int pad) { return __skb_pad(skb, pad, true); } #define dev_kfree_skb(a) consume_skb(a) int skb_append_pagefrags(struct sk_buff *skb, struct page *page, int offset, size_t size, size_t max_frags); struct skb_seq_state { __u32 lower_offset; __u32 upper_offset; __u32 frag_idx; __u32 stepped_offset; struct sk_buff *root_skb; struct sk_buff *cur_skb; __u8 *frag_data; __u32 frag_off; }; void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, unsigned int to, struct skb_seq_state *st); unsigned int skb_seq_read(unsigned int consumed, const u8 **data, struct skb_seq_state *st); void skb_abort_seq_read(struct skb_seq_state *st); unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, unsigned int to, struct ts_config *config); /* * Packet hash types specify the type of hash in skb_set_hash. * * Hash types refer to the protocol layer addresses which are used to * construct a packet's hash. The hashes are used to differentiate or identify * flows of the protocol layer for the hash type. Hash types are either * layer-2 (L2), layer-3 (L3), or layer-4 (L4). * * Properties of hashes: * * 1) Two packets in different flows have different hash values * 2) Two packets in the same flow should have the same hash value * * A hash at a higher layer is considered to be more specific. A driver should * set the most specific hash possible. * * A driver cannot indicate a more specific hash than the layer at which a hash * was computed. For instance an L3 hash cannot be set as an L4 hash. * * A driver may indicate a hash level which is less specific than the * actual layer the hash was computed on. For instance, a hash computed * at L4 may be considered an L3 hash. This should only be done if the * driver can't unambiguously determine that the HW computed the hash at * the higher layer. Note that the "should" in the second property above * permits this. */ enum pkt_hash_types { PKT_HASH_TYPE_NONE, /* Undefined type */ PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ }; static inline void skb_clear_hash(struct sk_buff *skb) { skb->hash = 0; skb->sw_hash = 0; skb->l4_hash = 0; } static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) { if (!skb->l4_hash) skb_clear_hash(skb); } static inline void __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) { skb->l4_hash = is_l4; skb->sw_hash = is_sw; skb->hash = hash; } static inline void skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) { /* Used by drivers to set hash from HW */ __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); } static inline void __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) { __skb_set_hash(skb, hash, true, is_l4); } void __skb_get_hash(struct sk_buff *skb); u32 __skb_get_hash_symmetric(const struct sk_buff *skb); u32 skb_get_poff(const struct sk_buff *skb); u32 __skb_get_poff(const struct sk_buff *skb, const void *data, const struct flow_keys_basic *keys, int hlen); __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, const void *data, int hlen_proto); static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto) { return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); } void skb_flow_dissector_init(struct flow_dissector *flow_dissector, const struct flow_dissector_key *key, unsigned int key_count); struct bpf_flow_dissector; u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, __be16 proto, int nhoff, int hlen, unsigned int flags); bool __skb_flow_dissect(const struct net *net, const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, const void *data, __be16 proto, int nhoff, int hlen, unsigned int flags); static inline bool skb_flow_dissect(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, unsigned int flags) { return __skb_flow_dissect(NULL, skb, flow_dissector, target_container, NULL, 0, 0, 0, flags); } static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, struct flow_keys *flow, unsigned int flags) { memset(flow, 0, sizeof(*flow)); return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, flow, NULL, 0, 0, 0, flags); } static inline bool skb_flow_dissect_flow_keys_basic(const struct net *net, const struct sk_buff *skb, struct flow_keys_basic *flow, const void *data, __be16 proto, int nhoff, int hlen, unsigned int flags) { memset(flow, 0, sizeof(*flow)); return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, data, proto, nhoff, hlen, flags); } void skb_flow_dissect_meta(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container); /* Gets a skb connection tracking info, ctinfo map should be a * map of mapsize to translate enum ip_conntrack_info states * to user states. */ void skb_flow_dissect_ct(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, u16 *ctinfo_map, size_t mapsize, bool post_ct, u16 zone); void skb_flow_dissect_tunnel_info(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container); void skb_flow_dissect_hash(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container); static inline __u32 skb_get_hash(struct sk_buff *skb) { if (!skb->l4_hash && !skb->sw_hash) __skb_get_hash(skb); return skb->hash; } static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) { if (!skb->l4_hash && !skb->sw_hash) { struct flow_keys keys; __u32 hash = __get_hash_from_flowi6(fl6, &keys); __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); } return skb->hash; } __u32 skb_get_hash_perturb(const struct sk_buff *skb, const siphash_key_t *perturb); static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) { return skb->hash; } static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) { to->hash = from->hash; to->sw_hash = from->sw_hash; to->l4_hash = from->l4_hash; }; static inline int skb_cmp_decrypted(const struct sk_buff *skb1, const struct sk_buff *skb2) { #ifdef CONFIG_TLS_DEVICE return skb2->decrypted - skb1->decrypted; #else return 0; #endif } static inline void skb_copy_decrypted(struct sk_buff *to, const struct sk_buff *from) { #ifdef CONFIG_TLS_DEVICE to->decrypted = from->decrypted; #endif } #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) { return skb->head + skb->end; } static inline unsigned int skb_end_offset(const struct sk_buff *skb) { return skb->end; } static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) { skb->end = offset; } #else static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) { return skb->end; } static inline unsigned int skb_end_offset(const struct sk_buff *skb) { return skb->end - skb->head; } static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) { skb->end = skb->head + offset; } #endif struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, struct ubuf_info *uarg); void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, bool success); int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, struct sk_buff *skb, struct iov_iter *from, size_t length); static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len) { return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); } int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, struct msghdr *msg, int len, struct ubuf_info *uarg); /* Internal */ #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) { return &skb_shinfo(skb)->hwtstamps; } static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) { bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; return is_zcopy ? skb_uarg(skb) : NULL; } static inline bool skb_zcopy_pure(const struct sk_buff *skb) { return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; } static inline bool skb_zcopy_managed(const struct sk_buff *skb) { return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; } static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, const struct sk_buff *skb2) { return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); } static inline void net_zcopy_get(struct ubuf_info *uarg) { refcount_inc(&uarg->refcnt); } static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) { skb_shinfo(skb)->destructor_arg = uarg; skb_shinfo(skb)->flags |= uarg->flags; } static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, bool *have_ref) { if (skb && uarg && !skb_zcopy(skb)) { if (unlikely(have_ref && *have_ref)) *have_ref = false; else net_zcopy_get(uarg); skb_zcopy_init(skb, uarg); } } static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) { skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; } static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) { return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; } static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) { return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); } static inline void net_zcopy_put(struct ubuf_info *uarg) { if (uarg) uarg->callback(NULL, uarg, true); } static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) { if (uarg) { if (uarg->callback == msg_zerocopy_callback) msg_zerocopy_put_abort(uarg, have_uref); else if (have_uref) net_zcopy_put(uarg); } } /* Release a reference on a zerocopy structure */ static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) { struct ubuf_info *uarg = skb_zcopy(skb); if (uarg) { if (!skb_zcopy_is_nouarg(skb)) uarg->callback(skb, uarg, zerocopy_success); skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; } } void __skb_zcopy_downgrade_managed(struct sk_buff *skb); static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) { if (unlikely(skb_zcopy_managed(skb))) __skb_zcopy_downgrade_managed(skb); } static inline void skb_mark_not_on_list(struct sk_buff *skb) { skb->next = NULL; } static inline void skb_poison_list(struct sk_buff *skb) { #ifdef CONFIG_DEBUG_NET skb->next = SKB_LIST_POISON_NEXT; #endif } /* Iterate through singly-linked GSO fragments of an skb. */ #define skb_list_walk_safe(first, skb, next_skb) \ for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) static inline void skb_list_del_init(struct sk_buff *skb) { __list_del_entry(&skb->list); skb_mark_not_on_list(skb); } /** * skb_queue_empty - check if a queue is empty * @list: queue head * * Returns true if the queue is empty, false otherwise. */ static inline int skb_queue_empty(const struct sk_buff_head *list) { return list->next == (const struct sk_buff *) list; } /** * skb_queue_empty_lockless - check if a queue is empty * @list: queue head * * Returns true if the queue is empty, false otherwise. * This variant can be used in lockless contexts. */ static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) { return READ_ONCE(list->next) == (const struct sk_buff *) list; } /** * skb_queue_is_last - check if skb is the last entry in the queue * @list: queue head * @skb: buffer * * Returns true if @skb is the last buffer on the list. */ static inline bool skb_queue_is_last(const struct sk_buff_head *list, const struct sk_buff *skb) { return skb->next == (const struct sk_buff *) list; } /** * skb_queue_is_first - check if skb is the first entry in the queue * @list: queue head * @skb: buffer * * Returns true if @skb is the first buffer on the list. */ static inline bool skb_queue_is_first(const struct sk_buff_head *list, const struct sk_buff *skb) { return skb->prev == (const struct sk_buff *) list; } /** * skb_queue_next - return the next packet in the queue * @list: queue head * @skb: current buffer * * Return the next packet in @list after @skb. It is only valid to * call this if skb_queue_is_last() evaluates to false. */ static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, const struct sk_buff *skb) { /* This BUG_ON may seem severe, but if we just return then we * are going to dereference garbage. */ BUG_ON(skb_queue_is_last(list, skb)); return skb->next; } /** * skb_queue_prev - return the prev packet in the queue * @list: queue head * @skb: current buffer * * Return the prev packet in @list before @skb. It is only valid to * call this if skb_queue_is_first() evaluates to false. */ static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, const struct sk_buff *skb) { /* This BUG_ON may seem severe, but if we just return then we * are going to dereference garbage. */ BUG_ON(skb_queue_is_first(list, skb)); return skb->prev; } /** * skb_get - reference buffer * @skb: buffer to reference * * Makes another reference to a socket buffer and returns a pointer * to the buffer. */ static inline struct sk_buff *skb_get(struct sk_buff *skb) { refcount_inc(&skb->users); return skb; } /* * If users == 1, we are the only owner and can avoid redundant atomic changes. */ /** * skb_cloned - is the buffer a clone * @skb: buffer to check * * Returns true if the buffer was generated with skb_clone() and is * one of multiple shared copies of the buffer. Cloned buffers are * shared data so must not be written to under normal circumstances. */ static inline int skb_cloned(const struct sk_buff *skb) { return skb->cloned && (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; } static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_cloned(skb)) return pskb_expand_head(skb, 0, 0, pri); return 0; } /* This variant of skb_unclone() makes sure skb->truesize * and skb_end_offset() are not changed, whenever a new skb->head is needed. * * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) * when various debugging features are in place. */ int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_cloned(skb)) return __skb_unclone_keeptruesize(skb, pri); return 0; } /** * skb_header_cloned - is the header a clone * @skb: buffer to check * * Returns true if modifying the header part of the buffer requires * the data to be copied. */ static inline int skb_header_cloned(const struct sk_buff *skb) { int dataref; if (!skb->cloned) return 0; dataref = atomic_read(&skb_shinfo(skb)->dataref); dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); return dataref != 1; } static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_header_cloned(skb)) return pskb_expand_head(skb, 0, 0, pri); return 0; } /** * __skb_header_release() - allow clones to use the headroom * @skb: buffer to operate on * * See "DOC: dataref and headerless skbs". */ static inline void __skb_header_release(struct sk_buff *skb) { skb->nohdr = 1; atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); } /** * skb_shared - is the buffer shared * @skb: buffer to check * * Returns true if more than one person has a reference to this * buffer. */ static inline int skb_shared(const struct sk_buff *skb) { return refcount_read(&skb->users) != 1; } /** * skb_share_check - check if buffer is shared and if so clone it * @skb: buffer to check * @pri: priority for memory allocation * * If the buffer is shared the buffer is cloned and the old copy * drops a reference. A new clone with a single reference is returned. * If the buffer is not shared the original buffer is returned. When * being called from interrupt status or with spinlocks held pri must * be GFP_ATOMIC. * * NULL is returned on a memory allocation failure. */ static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_shared(skb)) { struct sk_buff *nskb = skb_clone(skb, pri); if (likely(nskb)) consume_skb(skb); else kfree_skb(skb); skb = nskb; } return skb; } /* * Copy shared buffers into a new sk_buff. We effectively do COW on * packets to handle cases where we have a local reader and forward * and a couple of other messy ones. The normal one is tcpdumping * a packet that's being forwarded. */ /** * skb_unshare - make a copy of a shared buffer * @skb: buffer to check * @pri: priority for memory allocation * * If the socket buffer is a clone then this function creates a new * copy of the data, drops a reference count on the old copy and returns * the new copy with the reference count at 1. If the buffer is not a clone * the original buffer is returned. When called with a spinlock held or * from interrupt state @pri must be %GFP_ATOMIC * * %NULL is returned on a memory allocation failure. */ static inline struct sk_buff *skb_unshare(struct sk_buff *skb, gfp_t pri) { might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_cloned(skb)) { struct sk_buff *nskb = skb_copy(skb, pri); /* Free our shared copy */ if (likely(nskb)) consume_skb(skb); else kfree_skb(skb); skb = nskb; } return skb; } /** * skb_peek - peek at the head of an &sk_buff_head * @list_: list to peek at * * Peek an &sk_buff. Unlike most other operations you _MUST_ * be careful with this one. A peek leaves the buffer on the * list and someone else may run off with it. You must hold * the appropriate locks or have a private queue to do this. * * Returns %NULL for an empty list or a pointer to the head element. * The reference count is not incremented and the reference is therefore * volatile. Use with caution. */ static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) { struct sk_buff *skb = list_->next; if (skb == (struct sk_buff *)list_) skb = NULL; return skb; } /** * __skb_peek - peek at the head of a non-empty &sk_buff_head * @list_: list to peek at * * Like skb_peek(), but the caller knows that the list is not empty. */ static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) { return list_->next; } /** * skb_peek_next - peek skb following the given one from a queue * @skb: skb to start from * @list_: list to peek at * * Returns %NULL when the end of the list is met or a pointer to the * next element. The reference count is not incremented and the * reference is therefore volatile. Use with caution. */ static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, const struct sk_buff_head *list_) { struct sk_buff *next = skb->next; if (next == (struct sk_buff *)list_) next = NULL; return next; } /** * skb_peek_tail - peek at the tail of an &sk_buff_head * @list_: list to peek at * * Peek an &sk_buff. Unlike most other operations you _MUST_ * be careful with this one. A peek leaves the buffer on the * list and someone else may run off with it. You must hold * the appropriate locks or have a private queue to do this. * * Returns %NULL for an empty list or a pointer to the tail element. * The reference count is not incremented and the reference is therefore * volatile. Use with caution. */ static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) { struct sk_buff *skb = READ_ONCE(list_->prev); if (skb == (struct sk_buff *)list_) skb = NULL; return skb; } /** * skb_queue_len - get queue length * @list_: list to measure * * Return the length of an &sk_buff queue. */ static inline __u32 skb_queue_len(const struct sk_buff_head *list_) { return list_->qlen; } /** * skb_queue_len_lockless - get queue length * @list_: list to measure * * Return the length of an &sk_buff queue. * This variant can be used in lockless contexts. */ static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) { return READ_ONCE(list_->qlen); } /** * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head * @list: queue to initialize * * This initializes only the list and queue length aspects of * an sk_buff_head object. This allows to initialize the list * aspects of an sk_buff_head without reinitializing things like * the spinlock. It can also be used for on-stack sk_buff_head * objects where the spinlock is known to not be used. */ static inline void __skb_queue_head_init(struct sk_buff_head *list) { list->prev = list->next = (struct sk_buff *)list; list->qlen = 0; } /* * This function creates a split out lock class for each invocation; * this is needed for now since a whole lot of users of the skb-queue * infrastructure in drivers have different locking usage (in hardirq) * than the networking core (in softirq only). In the long run either the * network layer or drivers should need annotation to consolidate the * main types of usage into 3 classes. */ static inline void skb_queue_head_init(struct sk_buff_head *list) { spin_lock_init(&list->lock); __skb_queue_head_init(list); } static inline void skb_queue_head_init_class(struct sk_buff_head *list, struct lock_class_key *class) { skb_queue_head_init(list); lockdep_set_class(&list->lock, class); } /* * Insert an sk_buff on a list. * * The "__skb_xxxx()" functions are the non-atomic ones that * can only be called with interrupts disabled. */ static inline void __skb_insert(struct sk_buff *newsk, struct sk_buff *prev, struct sk_buff *next, struct sk_buff_head *list) { /* See skb_queue_empty_lockless() and skb_peek_tail() * for the opposite READ_ONCE() */ WRITE_ONCE(newsk->next, next); WRITE_ONCE(newsk->prev, prev); WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); WRITE_ONCE(list->qlen, list->qlen + 1); } static inline void __skb_queue_splice(const struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *next) { struct sk_buff *first = list->next; struct sk_buff *last = list->prev; WRITE_ONCE(first->prev, prev); WRITE_ONCE(prev->next, first); WRITE_ONCE(last->next, next); WRITE_ONCE(next->prev, last); } /** * skb_queue_splice - join two skb lists, this is designed for stacks * @list: the new list to add * @head: the place to add it in the first list */ static inline void skb_queue_splice(const struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, (struct sk_buff *) head, head->next); head->qlen += list->qlen; } } /** * skb_queue_splice_init - join two skb lists and reinitialise the emptied list * @list: the new list to add * @head: the place to add it in the first list * * The list at @list is reinitialised */ static inline void skb_queue_splice_init(struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, (struct sk_buff *) head, head->next); head->qlen += list->qlen; __skb_queue_head_init(list); } } /** * skb_queue_splice_tail - join two skb lists, each list being a queue * @list: the new list to add * @head: the place to add it in the first list */ static inline void skb_queue_splice_tail(const struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, head->prev, (struct sk_buff *) head); head->qlen += list->qlen; } } /** * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list * @list: the new list to add * @head: the place to add it in the first list * * Each of the lists is a queue. * The list at @list is reinitialised */ static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, head->prev, (struct sk_buff *) head); head->qlen += list->qlen; __skb_queue_head_init(list); } } /** * __skb_queue_after - queue a buffer at the list head * @list: list to use * @prev: place after this buffer * @newsk: buffer to queue * * Queue a buffer int the middle of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_after(struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *newsk) { __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); } void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); static inline void __skb_queue_before(struct sk_buff_head *list, struct sk_buff *next, struct sk_buff *newsk) { __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); } /** * __skb_queue_head - queue a buffer at the list head * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the start of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_after(list, (struct sk_buff *)list, newsk); } void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); /** * __skb_queue_tail - queue a buffer at the list tail * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the end of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_before(list, (struct sk_buff *)list, newsk); } void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); /* * remove sk_buff from list. _Must_ be called atomically, and with * the list known.. */ void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) { struct sk_buff *next, *prev; WRITE_ONCE(list->qlen, list->qlen - 1); next = skb->next; prev = skb->prev; skb->next = skb->prev = NULL; WRITE_ONCE(next->prev, prev); WRITE_ONCE(prev->next, next); } /** * __skb_dequeue - remove from the head of the queue * @list: list to dequeue from * * Remove the head of the list. This function does not take any locks * so must be used with appropriate locks held only. The head item is * returned or %NULL if the list is empty. */ static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) { struct sk_buff *skb = skb_peek(list); if (skb) __skb_unlink(skb, list); return skb; } struct sk_buff *skb_dequeue(struct sk_buff_head *list); /** * __skb_dequeue_tail - remove from the tail of the queue * @list: list to dequeue from * * Remove the tail of the list. This function does not take any locks * so must be used with appropriate locks held only. The tail item is * returned or %NULL if the list is empty. */ static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) { struct sk_buff *skb = skb_peek_tail(list); if (skb) __skb_unlink(skb, list); return skb; } struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); static inline bool skb_is_nonlinear(const struct sk_buff *skb) { return skb->data_len; } static inline unsigned int skb_headlen(const struct sk_buff *skb) { return skb->len - skb->data_len; } static inline unsigned int __skb_pagelen(const struct sk_buff *skb) { unsigned int i, len = 0; for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) len += skb_frag_size(&skb_shinfo(skb)->frags[i]); return len; } static inline unsigned int skb_pagelen(const struct sk_buff *skb) { return skb_headlen(skb) + __skb_pagelen(skb); } static inline void skb_frag_fill_page_desc(skb_frag_t *frag, struct page *page, int off, int size) { frag->bv_page = page; frag->bv_offset = off; skb_frag_size_set(frag, size); } static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, int i, struct page *page, int off, int size) { skb_frag_t *frag = &shinfo->frags[i]; skb_frag_fill_page_desc(frag, page, off, size); } /** * skb_len_add - adds a number to len fields of skb * @skb: buffer to add len to * @delta: number of bytes to add */ static inline void skb_len_add(struct sk_buff *skb, int delta) { skb->len += delta; skb->data_len += delta; skb->truesize += delta; } /** * __skb_fill_page_desc - initialise a paged fragment in an skb * @skb: buffer containing fragment to be initialised * @i: paged fragment index to initialise * @page: the page to use for this fragment * @off: the offset to the data with @page * @size: the length of the data * * Initialises the @i'th fragment of @skb to point to &size bytes at * offset @off within @page. * * Does not take any additional reference on the fragment. */ static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size) { __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size); /* Propagate page pfmemalloc to the skb if we can. The problem is * that not all callers have unique ownership of the page but rely * on page_is_pfmemalloc doing the right thing(tm). */ page = compound_head(page); if (page_is_pfmemalloc(page)) skb->pfmemalloc = true; } /** * skb_fill_page_desc - initialise a paged fragment in an skb * @skb: buffer containing fragment to be initialised * @i: paged fragment index to initialise * @page: the page to use for this fragment * @off: the offset to the data with @page * @size: the length of the data * * As per __skb_fill_page_desc() -- initialises the @i'th fragment of * @skb to point to @size bytes at offset @off within @page. In * addition updates @skb such that @i is the last fragment. * * Does not take any additional reference on the fragment. */ static inline void skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size) { __skb_fill_page_desc(skb, i, page, off, size); skb_shinfo(skb)->nr_frags = i + 1; } /** * skb_fill_page_desc_noacc - initialise a paged fragment in an skb * @skb: buffer containing fragment to be initialised * @i: paged fragment index to initialise * @page: the page to use for this fragment * @off: the offset to the data with @page * @size: the length of the data * * Variant of skb_fill_page_desc() which does not deal with * pfmemalloc, if page is not owned by us. */ static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, struct page *page, int off, int size) { struct skb_shared_info *shinfo = skb_shinfo(skb); __skb_fill_page_desc_noacc(shinfo, i, page, off, size); shinfo->nr_frags = i + 1; } void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, int size, unsigned int truesize); void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, unsigned int truesize); #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) { return skb->head + skb->tail; } static inline void skb_reset_tail_pointer(struct sk_buff *skb) { skb->tail = skb->data - skb->head; } static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) { skb_reset_tail_pointer(skb); skb->tail += offset; } #else /* NET_SKBUFF_DATA_USES_OFFSET */ static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) { return skb->tail; } static inline void skb_reset_tail_pointer(struct sk_buff *skb) { skb->tail = skb->data; } static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) { skb->tail = skb->data + offset; } #endif /* NET_SKBUFF_DATA_USES_OFFSET */ static inline void skb_assert_len(struct sk_buff *skb) { #ifdef CONFIG_DEBUG_NET if (WARN_ONCE(!skb->len, "%s\n", __func__)) DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); #endif /* CONFIG_DEBUG_NET */ } /* * Add data to an sk_buff */ void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); void *skb_put(struct sk_buff *skb, unsigned int len); static inline void *__skb_put(struct sk_buff *skb, unsigned int len) { void *tmp = skb_tail_pointer(skb); SKB_LINEAR_ASSERT(skb); skb->tail += len; skb->len += len; return tmp; } static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) { void *tmp = __skb_put(skb, len); memset(tmp, 0, len); return tmp; } static inline void *__skb_put_data(struct sk_buff *skb, const void *data, unsigned int len) { void *tmp = __skb_put(skb, len); memcpy(tmp, data, len); return tmp; } static inline void __skb_put_u8(struct sk_buff *skb, u8 val) { *(u8 *)__skb_put(skb, 1) = val; } static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) { void *tmp = skb_put(skb, len); memset(tmp, 0, len); return tmp; } static inline void *skb_put_data(struct sk_buff *skb, const void *data, unsigned int len) { void *tmp = skb_put(skb, len); memcpy(tmp, data, len); return tmp; } static inline void skb_put_u8(struct sk_buff *skb, u8 val) { *(u8 *)skb_put(skb, 1) = val; } void *skb_push(struct sk_buff *skb, unsigned int len); static inline void *__skb_push(struct sk_buff *skb, unsigned int len) { DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); skb->data -= len; skb->len += len; return skb->data; } void *skb_pull(struct sk_buff *skb, unsigned int len); static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) { DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); skb->len -= len; if (unlikely(skb->len < skb->data_len)) { #if defined(CONFIG_DEBUG_NET) skb->len += len; pr_err("__skb_pull(len=%u)\n", len); skb_dump(KERN_ERR, skb, false); #endif BUG(); } return skb->data += len; } static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) { return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); } void *skb_pull_data(struct sk_buff *skb, size_t len); void *__pskb_pull_tail(struct sk_buff *skb, int delta); static inline enum skb_drop_reason pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) { DEBUG_NET_WARN_ON_ONCE(len > INT_MAX); if (likely(len <= skb_headlen(skb))) return SKB_NOT_DROPPED_YET; if (unlikely(len > skb->len)) return SKB_DROP_REASON_PKT_TOO_SMALL; if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) return SKB_DROP_REASON_NOMEM; return SKB_NOT_DROPPED_YET; } static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) { return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; } static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) { if (!pskb_may_pull(skb, len)) return NULL; skb->len -= len; return skb->data += len; } void skb_condense(struct sk_buff *skb); /** * skb_headroom - bytes at buffer head * @skb: buffer to check * * Return the number of bytes of free space at the head of an &sk_buff. */ static inline unsigned int skb_headroom(const struct sk_buff *skb) { return skb->data - skb->head; } /** * skb_tailroom - bytes at buffer end * @skb: buffer to check * * Return the number of bytes of free space at the tail of an sk_buff */ static inline int skb_tailroom(const struct sk_buff *skb) { return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; } /** * skb_availroom - bytes at buffer end * @skb: buffer to check * * Return the number of bytes of free space at the tail of an sk_buff * allocated by sk_stream_alloc() */ static inline int skb_availroom(const struct sk_buff *skb) { if (skb_is_nonlinear(skb)) return 0; return skb->end - skb->tail - skb->reserved_tailroom; } /** * skb_reserve - adjust headroom * @skb: buffer to alter * @len: bytes to move * * Increase the headroom of an empty &sk_buff by reducing the tail * room. This is only allowed for an empty buffer. */ static inline void skb_reserve(struct sk_buff *skb, int len) { skb->data += len; skb->tail += len; } /** * skb_tailroom_reserve - adjust reserved_tailroom * @skb: buffer to alter * @mtu: maximum amount of headlen permitted * @needed_tailroom: minimum amount of reserved_tailroom * * Set reserved_tailroom so that headlen can be as large as possible but * not larger than mtu and tailroom cannot be smaller than * needed_tailroom. * The required headroom should already have been reserved before using * this function. */ static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, unsigned int needed_tailroom) { SKB_LINEAR_ASSERT(skb); if (mtu < skb_tailroom(skb) - needed_tailroom) /* use at most mtu */ skb->reserved_tailroom = skb_tailroom(skb) - mtu; else /* use up to all available space */ skb->reserved_tailroom = needed_tailroom; } #define ENCAP_TYPE_ETHER 0 #define ENCAP_TYPE_IPPROTO 1 static inline void skb_set_inner_protocol(struct sk_buff *skb, __be16 protocol) { skb->inner_protocol = protocol; skb->inner_protocol_type = ENCAP_TYPE_ETHER; } static inline void skb_set_inner_ipproto(struct sk_buff *skb, __u8 ipproto) { skb->inner_ipproto = ipproto; skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; } static inline void skb_reset_inner_headers(struct sk_buff *skb) { skb->inner_mac_header = skb->mac_header; skb->inner_network_header = skb->network_header; skb->inner_transport_header = skb->transport_header; } static inline void skb_reset_mac_len(struct sk_buff *skb) { skb->mac_len = skb->network_header - skb->mac_header; } static inline unsigned char *skb_inner_transport_header(const struct sk_buff *skb) { return skb->head + skb->inner_transport_header; } static inline int skb_inner_transport_offset(const struct sk_buff *skb) { return skb_inner_transport_header(skb) - skb->data; } static inline void skb_reset_inner_transport_header(struct sk_buff *skb) { skb->inner_transport_header = skb->data - skb->head; } static inline void skb_set_inner_transport_header(struct sk_buff *skb, const int offset) { skb_reset_inner_transport_header(skb); skb->inner_transport_header += offset; } static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) { return skb->head + skb->inner_network_header; } static inline void skb_reset_inner_network_header(struct sk_buff *skb) { skb->inner_network_header = skb->data - skb->head; } static inline void skb_set_inner_network_header(struct sk_buff *skb, const int offset) { skb_reset_inner_network_header(skb); skb->inner_network_header += offset; } static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb) { return skb->inner_network_header > 0; } static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) { return skb->head + skb->inner_mac_header; } static inline void skb_reset_inner_mac_header(struct sk_buff *skb) { skb->inner_mac_header = skb->data - skb->head; } static inline void skb_set_inner_mac_header(struct sk_buff *skb, const int offset) { skb_reset_inner_mac_header(skb); skb->inner_mac_header += offset; } static inline bool skb_transport_header_was_set(const struct sk_buff *skb) { return skb->transport_header != (typeof(skb->transport_header))~0U; } static inline unsigned char *skb_transport_header(const struct sk_buff *skb) { DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); return skb->head + skb->transport_header; } static inline void skb_reset_transport_header(struct sk_buff *skb) { skb->transport_header = skb->data - skb->head; } static inline void skb_set_transport_header(struct sk_buff *skb, const int offset) { skb_reset_transport_header(skb); skb->transport_header += offset; } static inline unsigned char *skb_network_header(const struct sk_buff *skb) { return skb->head + skb->network_header; } static inline void skb_reset_network_header(struct sk_buff *skb) { skb->network_header = skb->data - skb->head; } static inline void skb_set_network_header(struct sk_buff *skb, const int offset) { skb_reset_network_header(skb); skb->network_header += offset; } static inline int skb_mac_header_was_set(const struct sk_buff *skb) { return skb->mac_header != (typeof(skb->mac_header))~0U; } static inline unsigned char *skb_mac_header(const struct sk_buff *skb) { DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); return skb->head + skb->mac_header; } static inline int skb_mac_offset(const struct sk_buff *skb) { return skb_mac_header(skb) - skb->data; } static inline u32 skb_mac_header_len(const struct sk_buff *skb) { DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); return skb->network_header - skb->mac_header; } static inline void skb_unset_mac_header(struct sk_buff *skb) { skb->mac_header = (typeof(skb->mac_header))~0U; } static inline void skb_reset_mac_header(struct sk_buff *skb) { skb->mac_header = skb->data - skb->head; } static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) { skb_reset_mac_header(skb); skb->mac_header += offset; } static inline void skb_pop_mac_header(struct sk_buff *skb) { skb->mac_header = skb->network_header; } static inline void skb_probe_transport_header(struct sk_buff *skb) { struct flow_keys_basic keys; if (skb_transport_header_was_set(skb)) return; if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, NULL, 0, 0, 0, 0)) skb_set_transport_header(skb, keys.control.thoff); } static inline void skb_mac_header_rebuild(struct sk_buff *skb) { if (skb_mac_header_was_set(skb)) { const unsigned char *old_mac = skb_mac_header(skb); skb_set_mac_header(skb, -skb->mac_len); memmove(skb_mac_header(skb), old_mac, skb->mac_len); } } /* Move the full mac header up to current network_header. * Leaves skb->data pointing at offset skb->mac_len into the mac_header. * Must be provided the complete mac header length. */ static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len) { if (skb_mac_header_was_set(skb)) { const unsigned char *old_mac = skb_mac_header(skb); skb_set_mac_header(skb, -full_mac_len); memmove(skb_mac_header(skb), old_mac, full_mac_len); __skb_push(skb, full_mac_len - skb->mac_len); } } static inline int skb_checksum_start_offset(const struct sk_buff *skb) { return skb->csum_start - skb_headroom(skb); } static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) { return skb->head + skb->csum_start; } static inline int skb_transport_offset(const struct sk_buff *skb) { return skb_transport_header(skb) - skb->data; } static inline u32 skb_network_header_len(const struct sk_buff *skb) { return skb->transport_header - skb->network_header; } static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) { return skb->inner_transport_header - skb->inner_network_header; } static inline int skb_network_offset(const struct sk_buff *skb) { return skb_network_header(skb) - skb->data; } static inline int skb_inner_network_offset(const struct sk_buff *skb) { return skb_inner_network_header(skb) - skb->data; } static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) { return pskb_may_pull(skb, skb_network_offset(skb) + len); } /* * CPUs often take a performance hit when accessing unaligned memory * locations. The actual performance hit varies, it can be small if the * hardware handles it or large if we have to take an exception and fix it * in software. * * Since an ethernet header is 14 bytes network drivers often end up with * the IP header at an unaligned offset. The IP header can be aligned by * shifting the start of the packet by 2 bytes. Drivers should do this * with: * * skb_reserve(skb, NET_IP_ALIGN); * * The downside to this alignment of the IP header is that the DMA is now * unaligned. On some architectures the cost of an unaligned DMA is high * and this cost outweighs the gains made by aligning the IP header. * * Since this trade off varies between architectures, we allow NET_IP_ALIGN * to be overridden. */ #ifndef NET_IP_ALIGN #define NET_IP_ALIGN 2 #endif /* * The networking layer reserves some headroom in skb data (via * dev_alloc_skb). This is used to avoid having to reallocate skb data when * the header has to grow. In the default case, if the header has to grow * 32 bytes or less we avoid the reallocation. * * Unfortunately this headroom changes the DMA alignment of the resulting * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive * on some architectures. An architecture can override this value, * perhaps setting it to a cacheline in size (since that will maintain * cacheline alignment of the DMA). It must be a power of 2. * * Various parts of the networking layer expect at least 32 bytes of * headroom, you should not reduce this. * * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) * to reduce average number of cache lines per packet. * get_rps_cpu() for example only access one 64 bytes aligned block : * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) */ #ifndef NET_SKB_PAD #define NET_SKB_PAD max(32, L1_CACHE_BYTES) #endif int ___pskb_trim(struct sk_buff *skb, unsigned int len); static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) { if (WARN_ON(skb_is_nonlinear(skb))) return; skb->len = len; skb_set_tail_pointer(skb, len); } static inline void __skb_trim(struct sk_buff *skb, unsigned int len) { __skb_set_length(skb, len); } void skb_trim(struct sk_buff *skb, unsigned int len); static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) { if (skb->data_len) return ___pskb_trim(skb, len); __skb_trim(skb, len); return 0; } static inline int pskb_trim(struct sk_buff *skb, unsigned int len) { return (len < skb->len) ? __pskb_trim(skb, len) : 0; } /** * pskb_trim_unique - remove end from a paged unique (not cloned) buffer * @skb: buffer to alter * @len: new length * * This is identical to pskb_trim except that the caller knows that * the skb is not cloned so we should never get an error due to out- * of-memory. */ static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) { int err = pskb_trim(skb, len); BUG_ON(err); } static inline int __skb_grow(struct sk_buff *skb, unsigned int len) { unsigned int diff = len - skb->len; if (skb_tailroom(skb) < diff) { int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), GFP_ATOMIC); if (ret) return ret; } __skb_set_length(skb, len); return 0; } /** * skb_orphan - orphan a buffer * @skb: buffer to orphan * * If a buffer currently has an owner then we call the owner's * destructor function and make the @skb unowned. The buffer continues * to exist but is no longer charged to its former owner. */ static inline void skb_orphan(struct sk_buff *skb) { if (skb->destructor) { skb->destructor(skb); skb->destructor = NULL; skb->sk = NULL; } else { BUG_ON(skb->sk); } } /** * skb_orphan_frags - orphan the frags contained in a buffer * @skb: buffer to orphan frags from * @gfp_mask: allocation mask for replacement pages * * For each frag in the SKB which needs a destructor (i.e. has an * owner) create a copy of that frag and release the original * page by calling the destructor. */ static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) { if (likely(!skb_zcopy(skb))) return 0; if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) return 0; return skb_copy_ubufs(skb, gfp_mask); } /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) { if (likely(!skb_zcopy(skb))) return 0; return skb_copy_ubufs(skb, gfp_mask); } /** * __skb_queue_purge_reason - empty a list * @list: list to empty * @reason: drop reason * * Delete all buffers on an &sk_buff list. Each buffer is removed from * the list and one reference dropped. This function does not take the * list lock and the caller must hold the relevant locks to use it. */ static inline void __skb_queue_purge_reason(struct sk_buff_head *list, enum skb_drop_reason reason) { struct sk_buff *skb; while ((skb = __skb_dequeue(list)) != NULL) kfree_skb_reason(skb, reason); } static inline void __skb_queue_purge(struct sk_buff_head *list) { __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); } void skb_queue_purge_reason(struct sk_buff_head *list, enum skb_drop_reason reason); static inline void skb_queue_purge(struct sk_buff_head *list) { skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE); } unsigned int skb_rbtree_purge(struct rb_root *root); void skb_errqueue_purge(struct sk_buff_head *list); void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); /** * netdev_alloc_frag - allocate a page fragment * @fragsz: fragment size * * Allocates a frag from a page for receive buffer. * Uses GFP_ATOMIC allocations. */ static inline void *netdev_alloc_frag(unsigned int fragsz) { return __netdev_alloc_frag_align(fragsz, ~0u); } static inline void *netdev_alloc_frag_align(unsigned int fragsz, unsigned int align) { WARN_ON_ONCE(!is_power_of_2(align)); return __netdev_alloc_frag_align(fragsz, -align); } struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, gfp_t gfp_mask); /** * netdev_alloc_skb - allocate an skbuff for rx on a specific device * @dev: network device to receive on * @length: length to allocate * * Allocate a new &sk_buff and assign it a usage count of one. The * buffer has unspecified headroom built in. Users should allocate * the headroom they think they need without accounting for the * built in space. The built in space is used for optimisations. * * %NULL is returned if there is no free memory. Although this function * allocates memory it can be called from an interrupt. */ static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, unsigned int length) { return __netdev_alloc_skb(dev, length, GFP_ATOMIC); } /* legacy helper around __netdev_alloc_skb() */ static inline struct sk_buff *__dev_alloc_skb(unsigned int length, gfp_t gfp_mask) { return __netdev_alloc_skb(NULL, length, gfp_mask); } /* legacy helper around netdev_alloc_skb() */ static inline struct sk_buff *dev_alloc_skb(unsigned int length) { return netdev_alloc_skb(NULL, length); } static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, unsigned int length, gfp_t gfp) { struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); if (NET_IP_ALIGN && skb) skb_reserve(skb, NET_IP_ALIGN); return skb; } static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, unsigned int length) { return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); } static inline void skb_free_frag(void *addr) { page_frag_free(addr); } void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); static inline void *napi_alloc_frag(unsigned int fragsz) { return __napi_alloc_frag_align(fragsz, ~0u); } static inline void *napi_alloc_frag_align(unsigned int fragsz, unsigned int align) { WARN_ON_ONCE(!is_power_of_2(align)); return __napi_alloc_frag_align(fragsz, -align); } struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int length, gfp_t gfp_mask); static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length) { return __napi_alloc_skb(napi, length, GFP_ATOMIC); } void napi_consume_skb(struct sk_buff *skb, int budget); void napi_skb_free_stolen_head(struct sk_buff *skb); void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason); /** * __dev_alloc_pages - allocate page for network Rx * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx * @order: size of the allocation * * Allocate a new page. * * %NULL is returned if there is no free memory. */ static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, unsigned int order) { /* This piece of code contains several assumptions. * 1. This is for device Rx, therefore a cold page is preferred. * 2. The expectation is the user wants a compound page. * 3. If requesting a order 0 page it will not be compound * due to the check to see if order has a value in prep_new_page * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to * code in gfp_to_alloc_flags that should be enforcing this. */ gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); } static inline struct page *dev_alloc_pages(unsigned int order) { return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); } /** * __dev_alloc_page - allocate a page for network Rx * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx * * Allocate a new page. * * %NULL is returned if there is no free memory. */ static inline struct page *__dev_alloc_page(gfp_t gfp_mask) { return __dev_alloc_pages(gfp_mask, 0); } static inline struct page *dev_alloc_page(void) { return dev_alloc_pages(0); } /** * dev_page_is_reusable - check whether a page can be reused for network Rx * @page: the page to test * * A page shouldn't be considered for reusing/recycling if it was allocated * under memory pressure or at a distant memory node. * * Returns false if this page should be returned to page allocator, true * otherwise. */ static inline bool dev_page_is_reusable(const struct page *page) { return likely(page_to_nid(page) == numa_mem_id() && !page_is_pfmemalloc(page)); } /** * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page * @page: The page that was allocated from skb_alloc_page * @skb: The skb that may need pfmemalloc set */ static inline void skb_propagate_pfmemalloc(const struct page *page, struct sk_buff *skb) { if (page_is_pfmemalloc(page)) skb->pfmemalloc = true; } /** * skb_frag_off() - Returns the offset of a skb fragment * @frag: the paged fragment */ static inline unsigned int skb_frag_off(const skb_frag_t *frag) { return frag->bv_offset; } /** * skb_frag_off_add() - Increments the offset of a skb fragment by @delta * @frag: skb fragment * @delta: value to add */ static inline void skb_frag_off_add(skb_frag_t *frag, int delta) { frag->bv_offset += delta; } /** * skb_frag_off_set() - Sets the offset of a skb fragment * @frag: skb fragment * @offset: offset of fragment */ static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) { frag->bv_offset = offset; } /** * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment * @fragto: skb fragment where offset is set * @fragfrom: skb fragment offset is copied from */ static inline void skb_frag_off_copy(skb_frag_t *fragto, const skb_frag_t *fragfrom) { fragto->bv_offset = fragfrom->bv_offset; } /** * skb_frag_page - retrieve the page referred to by a paged fragment * @frag: the paged fragment * * Returns the &struct page associated with @frag. */ static inline struct page *skb_frag_page(const skb_frag_t *frag) { return frag->bv_page; } /** * __skb_frag_ref - take an addition reference on a paged fragment. * @frag: the paged fragment * * Takes an additional reference on the paged fragment @frag. */ static inline void __skb_frag_ref(skb_frag_t *frag) { get_page(skb_frag_page(frag)); } /** * skb_frag_ref - take an addition reference on a paged fragment of an skb. * @skb: the buffer * @f: the fragment offset. * * Takes an additional reference on the @f'th paged fragment of @skb. */ static inline void skb_frag_ref(struct sk_buff *skb, int f) { __skb_frag_ref(&skb_shinfo(skb)->frags[f]); } bool napi_pp_put_page(struct page *page, bool napi_safe); static inline void skb_page_unref(const struct sk_buff *skb, struct page *page, bool napi_safe) { #ifdef CONFIG_PAGE_POOL if (skb->pp_recycle && napi_pp_put_page(page, napi_safe)) return; #endif put_page(page); } static inline void napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe) { struct page *page = skb_frag_page(frag); #ifdef CONFIG_PAGE_POOL if (recycle && napi_pp_put_page(page, napi_safe)) return; #endif put_page(page); } /** * __skb_frag_unref - release a reference on a paged fragment. * @frag: the paged fragment * @recycle: recycle the page if allocated via page_pool * * Releases a reference on the paged fragment @frag * or recycles the page via the page_pool API. */ static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) { napi_frag_unref(frag, recycle, false); } /** * skb_frag_unref - release a reference on a paged fragment of an skb. * @skb: the buffer * @f: the fragment offset * * Releases a reference on the @f'th paged fragment of @skb. */ static inline void skb_frag_unref(struct sk_buff *skb, int f) { struct skb_shared_info *shinfo = skb_shinfo(skb); if (!skb_zcopy_managed(skb)) __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); } /** * skb_frag_address - gets the address of the data contained in a paged fragment * @frag: the paged fragment buffer * * Returns the address of the data within @frag. The page must already * be mapped. */ static inline void *skb_frag_address(const skb_frag_t *frag) { return page_address(skb_frag_page(frag)) + skb_frag_off(frag); } /** * skb_frag_address_safe - gets the address of the data contained in a paged fragment * @frag: the paged fragment buffer * * Returns the address of the data within @frag. Checks that the page * is mapped and returns %NULL otherwise. */ static inline void *skb_frag_address_safe(const skb_frag_t *frag) { void *ptr = page_address(skb_frag_page(frag)); if (unlikely(!ptr)) return NULL; return ptr + skb_frag_off(frag); } /** * skb_frag_page_copy() - sets the page in a fragment from another fragment * @fragto: skb fragment where page is set * @fragfrom: skb fragment page is copied from */ static inline void skb_frag_page_copy(skb_frag_t *fragto, const skb_frag_t *fragfrom) { fragto->bv_page = fragfrom->bv_page; } bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); /** * skb_frag_dma_map - maps a paged fragment via the DMA API * @dev: the device to map the fragment to * @frag: the paged fragment to map * @offset: the offset within the fragment (starting at the * fragment's own offset) * @size: the number of bytes to map * @dir: the direction of the mapping (``PCI_DMA_*``) * * Maps the page associated with @frag to @device. */ static inline dma_addr_t skb_frag_dma_map(struct device *dev, const skb_frag_t *frag, size_t offset, size_t size, enum dma_data_direction dir) { return dma_map_page(dev, skb_frag_page(frag), skb_frag_off(frag) + offset, size, dir); } static inline struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) { return __pskb_copy(skb, skb_headroom(skb), gfp_mask); } static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, gfp_t gfp_mask) { return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); } /** * skb_clone_writable - is the header of a clone writable * @skb: buffer to check * @len: length up to which to write * * Returns true if modifying the header part of the cloned buffer * does not requires the data to be copied. */ static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) { return !skb_header_cloned(skb) && skb_headroom(skb) + len <= skb->hdr_len; } static inline int skb_try_make_writable(struct sk_buff *skb, unsigned int write_len) { return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); } static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, int cloned) { int delta = 0; if (headroom > skb_headroom(skb)) delta = headroom - skb_headroom(skb); if (delta || cloned) return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, GFP_ATOMIC); return 0; } /** * skb_cow - copy header of skb when it is required * @skb: buffer to cow * @headroom: needed headroom * * If the skb passed lacks sufficient headroom or its data part * is shared, data is reallocated. If reallocation fails, an error * is returned and original skb is not changed. * * The result is skb with writable area skb->head...skb->tail * and at least @headroom of space at head. */ static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) { return __skb_cow(skb, headroom, skb_cloned(skb)); } /** * skb_cow_head - skb_cow but only making the head writable * @skb: buffer to cow * @headroom: needed headroom * * This function is identical to skb_cow except that we replace the * skb_cloned check by skb_header_cloned. It should be used when * you only need to push on some header and do not need to modify * the data. */ static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) { return __skb_cow(skb, headroom, skb_header_cloned(skb)); } /** * skb_padto - pad an skbuff up to a minimal size * @skb: buffer to pad * @len: minimal length * * Pads up a buffer to ensure the trailing bytes exist and are * blanked. If the buffer already contains sufficient data it * is untouched. Otherwise it is extended. Returns zero on * success. The skb is freed on error. */ static inline int skb_padto(struct sk_buff *skb, unsigned int len) { unsigned int size = skb->len; if (likely(size >= len)) return 0; return skb_pad(skb, len - size); } /** * __skb_put_padto - increase size and pad an skbuff up to a minimal size * @skb: buffer to pad * @len: minimal length * @free_on_error: free buffer on error * * Pads up a buffer to ensure the trailing bytes exist and are * blanked. If the buffer already contains sufficient data it * is untouched. Otherwise it is extended. Returns zero on * success. The skb is freed on error if @free_on_error is true. */ static inline int __must_check __skb_put_padto(struct sk_buff *skb, unsigned int len, bool free_on_error) { unsigned int size = skb->len; if (unlikely(size < len)) { len -= size; if (__skb_pad(skb, len, free_on_error)) return -ENOMEM; __skb_put(skb, len); } return 0; } /** * skb_put_padto - increase size and pad an skbuff up to a minimal size * @skb: buffer to pad * @len: minimal length * * Pads up a buffer to ensure the trailing bytes exist and are * blanked. If the buffer already contains sufficient data it * is untouched. Otherwise it is extended. Returns zero on * success. The skb is freed on error. */ static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) { return __skb_put_padto(skb, len, true); } bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) __must_check; static inline int skb_add_data(struct sk_buff *skb, struct iov_iter *from, int copy) { const int off = skb->len; if (skb->ip_summed == CHECKSUM_NONE) { __wsum csum = 0; if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, &csum, from)) { skb->csum = csum_block_add(skb->csum, csum, off); return 0; } } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) return 0; __skb_trim(skb, off); return -EFAULT; } static inline bool skb_can_coalesce(struct sk_buff *skb, int i, const struct page *page, int off) { if (skb_zcopy(skb)) return false; if (i) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; return page == skb_frag_page(frag) && off == skb_frag_off(frag) + skb_frag_size(frag); } return false; } static inline int __skb_linearize(struct sk_buff *skb) { return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; } /** * skb_linearize - convert paged skb to linear one * @skb: buffer to linarize * * If there is no free memory -ENOMEM is returned, otherwise zero * is returned and the old skb data released. */ static inline int skb_linearize(struct sk_buff *skb) { return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; } /** * skb_has_shared_frag - can any frag be overwritten * @skb: buffer to test * * Return true if the skb has at least one frag that might be modified * by an external entity (as in vmsplice()/sendfile()) */ static inline bool skb_has_shared_frag(const struct sk_buff *skb) { return skb_is_nonlinear(skb) && skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; } /** * skb_linearize_cow - make sure skb is linear and writable * @skb: buffer to process * * If there is no free memory -ENOMEM is returned, otherwise zero * is returned and the old skb data released. */ static inline int skb_linearize_cow(struct sk_buff *skb) { return skb_is_nonlinear(skb) || skb_cloned(skb) ? __skb_linearize(skb) : 0; } static __always_inline void __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, unsigned int off) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_block_sub(skb->csum, csum_partial(start, len, 0), off); else if (skb->ip_summed == CHECKSUM_PARTIAL && skb_checksum_start_offset(skb) < 0) skb->ip_summed = CHECKSUM_NONE; } /** * skb_postpull_rcsum - update checksum for received skb after pull * @skb: buffer to update * @start: start of data before pull * @len: length of data pulled * * After doing a pull on a received packet, you need to call this to * update the CHECKSUM_COMPLETE checksum, or set ip_summed to * CHECKSUM_NONE so that it can be recomputed from scratch. */ static inline void skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = wsum_negate(csum_partial(start, len, wsum_negate(skb->csum))); else if (skb->ip_summed == CHECKSUM_PARTIAL && skb_checksum_start_offset(skb) < 0) skb->ip_summed = CHECKSUM_NONE; } static __always_inline void __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, unsigned int off) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_block_add(skb->csum, csum_partial(start, len, 0), off); } /** * skb_postpush_rcsum - update checksum for received skb after push * @skb: buffer to update * @start: start of data after push * @len: length of data pushed * * After doing a push on a received packet, you need to call this to * update the CHECKSUM_COMPLETE checksum. */ static inline void skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len) { __skb_postpush_rcsum(skb, start, len, 0); } void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); /** * skb_push_rcsum - push skb and update receive checksum * @skb: buffer to update * @len: length of data pulled * * This function performs an skb_push on the packet and updates * the CHECKSUM_COMPLETE checksum. It should be used on * receive path processing instead of skb_push unless you know * that the checksum difference is zero (e.g., a valid IP header) * or you are setting ip_summed to CHECKSUM_NONE. */ static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) { skb_push(skb, len); skb_postpush_rcsum(skb, skb->data, len); return skb->data; } int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); /** * pskb_trim_rcsum - trim received skb and update checksum * @skb: buffer to trim * @len: new length * * This is exactly the same as pskb_trim except that it ensures the * checksum of received packets are still valid after the operation. * It can change skb pointers. */ static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) { if (likely(len >= skb->len)) return 0; return pskb_trim_rcsum_slow(skb, len); } static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; __skb_trim(skb, len); return 0; } static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; return __skb_grow(skb, len); } #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) #define skb_rb_first(root) rb_to_skb(rb_first(root)) #define skb_rb_last(root) rb_to_skb(rb_last(root)) #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) #define skb_queue_walk(queue, skb) \ for (skb = (queue)->next; \ skb != (struct sk_buff *)(queue); \ skb = skb->next) #define skb_queue_walk_safe(queue, skb, tmp) \ for (skb = (queue)->next, tmp = skb->next; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->next) #define skb_queue_walk_from(queue, skb) \ for (; skb != (struct sk_buff *)(queue); \ skb = skb->next) #define skb_rbtree_walk(skb, root) \ for (skb = skb_rb_first(root); skb != NULL; \ skb = skb_rb_next(skb)) #define skb_rbtree_walk_from(skb) \ for (; skb != NULL; \ skb = skb_rb_next(skb)) #define skb_rbtree_walk_from_safe(skb, tmp) \ for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ skb = tmp) #define skb_queue_walk_from_safe(queue, skb, tmp) \ for (tmp = skb->next; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->next) #define skb_queue_reverse_walk(queue, skb) \ for (skb = (queue)->prev; \ skb != (struct sk_buff *)(queue); \ skb = skb->prev) #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ for (skb = (queue)->prev, tmp = skb->prev; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->prev) #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ for (tmp = skb->prev; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->prev) static inline bool skb_has_frag_list(const struct sk_buff *skb) { return skb_shinfo(skb)->frag_list != NULL; } static inline void skb_frag_list_init(struct sk_buff *skb) { skb_shinfo(skb)->frag_list = NULL; } #define skb_walk_frags(skb, iter) \ for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, int *err, long *timeo_p, const struct sk_buff *skb); struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, struct sk_buff_head *queue, unsigned int flags, int *off, int *err, struct sk_buff **last); struct sk_buff *__skb_try_recv_datagram(struct sock *sk, struct sk_buff_head *queue, unsigned int flags, int *off, int *err, struct sk_buff **last); struct sk_buff *__skb_recv_datagram(struct sock *sk, struct sk_buff_head *sk_queue, unsigned int flags, int *off, int *err); struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); __poll_t datagram_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait); int skb_copy_datagram_iter(const struct sk_buff *from, int offset, struct iov_iter *to, int size); static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, struct msghdr *msg, int size) { return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); } int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, struct msghdr *msg); int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, struct iov_iter *to, int len, struct ahash_request *hash); int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, struct iov_iter *from, int len); int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); void skb_free_datagram(struct sock *sk, struct sk_buff *skb); void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); static inline void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb) { __skb_free_datagram_locked(sk, skb, 0); } int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, int len); int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, struct pipe_inode_info *pipe, unsigned int len, unsigned int flags); int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, int len); int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); unsigned int skb_zerocopy_headlen(const struct sk_buff *from); int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen); void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); void skb_scrub_packet(struct sk_buff *skb, bool xnet); struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, unsigned int offset); struct sk_buff *skb_vlan_untag(struct sk_buff *skb); int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev); int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); int skb_vlan_pop(struct sk_buff *skb); int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); int skb_eth_pop(struct sk_buff *skb); int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, const unsigned char *src); int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, int mac_len, bool ethernet); int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, bool ethernet); int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); int skb_mpls_dec_ttl(struct sk_buff *skb); struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, gfp_t gfp); static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) { return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; } static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) { return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; } struct skb_checksum_ops { __wsum (*update)(const void *mem, int len, __wsum wsum); __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); }; extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum, const struct skb_checksum_ops *ops); __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum); static inline void * __must_check __skb_header_pointer(const struct sk_buff *skb, int offset, int len, const void *data, int hlen, void *buffer) { if (likely(hlen - offset >= len)) return (void *)data + offset; if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) return NULL; return buffer; } static inline void * __must_check skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) { return __skb_header_pointer(skb, offset, len, skb->data, skb_headlen(skb), buffer); } static inline void * __must_check skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len) { if (likely(skb_headlen(skb) - offset >= len)) return skb->data + offset; return NULL; } /** * skb_needs_linearize - check if we need to linearize a given skb * depending on the given device features. * @skb: socket buffer to check * @features: net device features * * Returns true if either: * 1. skb has frag_list and the device doesn't support FRAGLIST, or * 2. skb is fragmented and the device does not support SG. */ static inline bool skb_needs_linearize(struct sk_buff *skb, netdev_features_t features) { return skb_is_nonlinear(skb) && ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); } static inline void skb_copy_from_linear_data(const struct sk_buff *skb, void *to, const unsigned int len) { memcpy(to, skb->data, len); } static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, const int offset, void *to, const unsigned int len) { memcpy(to, skb->data + offset, len); } static inline void skb_copy_to_linear_data(struct sk_buff *skb, const void *from, const unsigned int len) { memcpy(skb->data, from, len); } static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, const int offset, const void *from, const unsigned int len) { memcpy(skb->data + offset, from, len); } void skb_init(void); static inline ktime_t skb_get_ktime(const struct sk_buff *skb) { return skb->tstamp; } /** * skb_get_timestamp - get timestamp from a skb * @skb: skb to get stamp from * @stamp: pointer to struct __kernel_old_timeval to store stamp in * * Timestamps are stored in the skb as offsets to a base timestamp. * This function converts the offset back to a struct timeval and stores * it in stamp. */ static inline void skb_get_timestamp(const struct sk_buff *skb, struct __kernel_old_timeval *stamp) { *stamp = ns_to_kernel_old_timeval(skb->tstamp); } static inline void skb_get_new_timestamp(const struct sk_buff *skb, struct __kernel_sock_timeval *stamp) { struct timespec64 ts = ktime_to_timespec64(skb->tstamp); stamp->tv_sec = ts.tv_sec; stamp->tv_usec = ts.tv_nsec / 1000; } static inline void skb_get_timestampns(const struct sk_buff *skb, struct __kernel_old_timespec *stamp) { struct timespec64 ts = ktime_to_timespec64(skb->tstamp); stamp->tv_sec = ts.tv_sec; stamp->tv_nsec = ts.tv_nsec; } static inline void skb_get_new_timestampns(const struct sk_buff *skb, struct __kernel_timespec *stamp) { struct timespec64 ts = ktime_to_timespec64(skb->tstamp); stamp->tv_sec = ts.tv_sec; stamp->tv_nsec = ts.tv_nsec; } static inline void __net_timestamp(struct sk_buff *skb) { skb->tstamp = ktime_get_real(); skb->mono_delivery_time = 0; } static inline ktime_t net_timedelta(ktime_t t) { return ktime_sub(ktime_get_real(), t); } static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, bool mono) { skb->tstamp = kt; skb->mono_delivery_time = kt && mono; } DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); /* It is used in the ingress path to clear the delivery_time. * If needed, set the skb->tstamp to the (rcv) timestamp. */ static inline void skb_clear_delivery_time(struct sk_buff *skb) { if (skb->mono_delivery_time) { skb->mono_delivery_time = 0; if (static_branch_unlikely(&netstamp_needed_key)) skb->tstamp = ktime_get_real(); else skb->tstamp = 0; } } static inline void skb_clear_tstamp(struct sk_buff *skb) { if (skb->mono_delivery_time) return; skb->tstamp = 0; } static inline ktime_t skb_tstamp(const struct sk_buff *skb) { if (skb->mono_delivery_time) return 0; return skb->tstamp; } static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) { if (!skb->mono_delivery_time && skb->tstamp) return skb->tstamp; if (static_branch_unlikely(&netstamp_needed_key) || cond) return ktime_get_real(); return 0; } static inline u8 skb_metadata_len(const struct sk_buff *skb) { return skb_shinfo(skb)->meta_len; } static inline void *skb_metadata_end(const struct sk_buff *skb) { return skb_mac_header(skb); } static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, const struct sk_buff *skb_b, u8 meta_len) { const void *a = skb_metadata_end(skb_a); const void *b = skb_metadata_end(skb_b); u64 diffs = 0; if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || BITS_PER_LONG != 64) goto slow; /* Using more efficient variant than plain call to memcmp(). */ switch (meta_len) { #define __it(x, op) (x -= sizeof(u##op)) #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) case 32: diffs |= __it_diff(a, b, 64); fallthrough; case 24: diffs |= __it_diff(a, b, 64); fallthrough; case 16: diffs |= __it_diff(a, b, 64); fallthrough; case 8: diffs |= __it_diff(a, b, 64); break; case 28: diffs |= __it_diff(a, b, 64); fallthrough; case 20: diffs |= __it_diff(a, b, 64); fallthrough; case 12: diffs |= __it_diff(a, b, 64); fallthrough; case 4: diffs |= __it_diff(a, b, 32); break; default: slow: return memcmp(a - meta_len, b - meta_len, meta_len); } return diffs; } static inline bool skb_metadata_differs(const struct sk_buff *skb_a, const struct sk_buff *skb_b) { u8 len_a = skb_metadata_len(skb_a); u8 len_b = skb_metadata_len(skb_b); if (!(len_a | len_b)) return false; return len_a != len_b ? true : __skb_metadata_differs(skb_a, skb_b, len_a); } static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) { skb_shinfo(skb)->meta_len = meta_len; } static inline void skb_metadata_clear(struct sk_buff *skb) { skb_metadata_set(skb, 0); } struct sk_buff *skb_clone_sk(struct sk_buff *skb); #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING void skb_clone_tx_timestamp(struct sk_buff *skb); bool skb_defer_rx_timestamp(struct sk_buff *skb); #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ static inline void skb_clone_tx_timestamp(struct sk_buff *skb) { } static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) { return false; } #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ /** * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps * * PHY drivers may accept clones of transmitted packets for * timestamping via their phy_driver.txtstamp method. These drivers * must call this function to return the skb back to the stack with a * timestamp. * * @skb: clone of the original outgoing packet * @hwtstamps: hardware time stamps * */ void skb_complete_tx_timestamp(struct sk_buff *skb, struct skb_shared_hwtstamps *hwtstamps); void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, struct skb_shared_hwtstamps *hwtstamps, struct sock *sk, int tstype); /** * skb_tstamp_tx - queue clone of skb with send time stamps * @orig_skb: the original outgoing packet * @hwtstamps: hardware time stamps, may be NULL if not available * * If the skb has a socket associated, then this function clones the * skb (thus sharing the actual data and optional structures), stores * the optional hardware time stamping information (if non NULL) or * generates a software time stamp (otherwise), then queues the clone * to the error queue of the socket. Errors are silently ignored. */ void skb_tstamp_tx(struct sk_buff *orig_skb, struct skb_shared_hwtstamps *hwtstamps); /** * skb_tx_timestamp() - Driver hook for transmit timestamping * * Ethernet MAC Drivers should call this function in their hard_xmit() * function immediately before giving the sk_buff to the MAC hardware. * * Specifically, one should make absolutely sure that this function is * called before TX completion of this packet can trigger. Otherwise * the packet could potentially already be freed. * * @skb: A socket buffer. */ static inline void skb_tx_timestamp(struct sk_buff *skb) { skb_clone_tx_timestamp(skb); if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) skb_tstamp_tx(skb, NULL); } /** * skb_complete_wifi_ack - deliver skb with wifi status * * @skb: the original outgoing packet * @acked: ack status * */ void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); __sum16 __skb_checksum_complete(struct sk_buff *skb); static inline int skb_csum_unnecessary(const struct sk_buff *skb) { return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || skb->csum_valid || (skb->ip_summed == CHECKSUM_PARTIAL && skb_checksum_start_offset(skb) >= 0)); } /** * skb_checksum_complete - Calculate checksum of an entire packet * @skb: packet to process * * This function calculates the checksum over the entire packet plus * the value of skb->csum. The latter can be used to supply the * checksum of a pseudo header as used by TCP/UDP. It returns the * checksum. * * For protocols that contain complete checksums such as ICMP/TCP/UDP, * this function can be used to verify that checksum on received * packets. In that case the function should return zero if the * checksum is correct. In particular, this function will return zero * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the * hardware has already verified the correctness of the checksum. */ static inline __sum16 skb_checksum_complete(struct sk_buff *skb) { return skb_csum_unnecessary(skb) ? 0 : __skb_checksum_complete(skb); } static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_UNNECESSARY) { if (skb->csum_level == 0) skb->ip_summed = CHECKSUM_NONE; else skb->csum_level--; } } static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_UNNECESSARY) { if (skb->csum_level < SKB_MAX_CSUM_LEVEL) skb->csum_level++; } else if (skb->ip_summed == CHECKSUM_NONE) { skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum_level = 0; } } static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_UNNECESSARY) { skb->ip_summed = CHECKSUM_NONE; skb->csum_level = 0; } } /* Check if we need to perform checksum complete validation. * * Returns true if checksum complete is needed, false otherwise * (either checksum is unnecessary or zero checksum is allowed). */ static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, bool zero_okay, __sum16 check) { if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { skb->csum_valid = 1; __skb_decr_checksum_unnecessary(skb); return false; } return true; } /* For small packets <= CHECKSUM_BREAK perform checksum complete directly * in checksum_init. */ #define CHECKSUM_BREAK 76 /* Unset checksum-complete * * Unset checksum complete can be done when packet is being modified * (uncompressed for instance) and checksum-complete value is * invalidated. */ static inline void skb_checksum_complete_unset(struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; } /* Validate (init) checksum based on checksum complete. * * Return values: * 0: checksum is validated or try to in skb_checksum_complete. In the latter * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo * checksum is stored in skb->csum for use in __skb_checksum_complete * non-zero: value of invalid checksum * */ static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, bool complete, __wsum psum) { if (skb->ip_summed == CHECKSUM_COMPLETE) { if (!csum_fold(csum_add(psum, skb->csum))) { skb->csum_valid = 1; return 0; } } skb->csum = psum; if (complete || skb->len <= CHECKSUM_BREAK) { __sum16 csum; csum = __skb_checksum_complete(skb); skb->csum_valid = !csum; return csum; } return 0; } static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) { return 0; } /* Perform checksum validate (init). Note that this is a macro since we only * want to calculate the pseudo header which is an input function if necessary. * First we try to validate without any computation (checksum unnecessary) and * then calculate based on checksum complete calling the function to compute * pseudo header. * * Return values: * 0: checksum is validated or try to in skb_checksum_complete * non-zero: value of invalid checksum */ #define __skb_checksum_validate(skb, proto, complete, \ zero_okay, check, compute_pseudo) \ ({ \ __sum16 __ret = 0; \ skb->csum_valid = 0; \ if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ __ret = __skb_checksum_validate_complete(skb, \ complete, compute_pseudo(skb, proto)); \ __ret; \ }) #define skb_checksum_init(skb, proto, compute_pseudo) \ __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) #define skb_checksum_validate(skb, proto, compute_pseudo) \ __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) #define skb_checksum_validate_zero_check(skb, proto, check, \ compute_pseudo) \ __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) #define skb_checksum_simple_validate(skb) \ __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) static inline bool __skb_checksum_convert_check(struct sk_buff *skb) { return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); } static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) { skb->csum = ~pseudo; skb->ip_summed = CHECKSUM_COMPLETE; } #define skb_checksum_try_convert(skb, proto, compute_pseudo) \ do { \ if (__skb_checksum_convert_check(skb)) \ __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ } while (0) static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, u16 start, u16 offset) { skb->ip_summed = CHECKSUM_PARTIAL; skb->csum_start = ((unsigned char *)ptr + start) - skb->head; skb->csum_offset = offset - start; } /* Update skbuf and packet to reflect the remote checksum offload operation. * When called, ptr indicates the starting point for skb->csum when * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete * here, skb_postpull_rcsum is done so skb->csum start is ptr. */ static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, int start, int offset, bool nopartial) { __wsum delta; if (!nopartial) { skb_remcsum_adjust_partial(skb, ptr, start, offset); return; } if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { __skb_checksum_complete(skb); skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); } delta = remcsum_adjust(ptr, skb->csum, start, offset); /* Adjust skb->csum since we changed the packet */ skb->csum = csum_add(skb->csum, delta); } static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) return (void *)(skb->_nfct & NFCT_PTRMASK); #else return NULL; #endif } static inline unsigned long skb_get_nfct(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) return skb->_nfct; #else return 0UL; #endif } static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) skb->slow_gro |= !!nfct; skb->_nfct = nfct; #endif } #ifdef CONFIG_SKB_EXTENSIONS enum skb_ext_id { #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) SKB_EXT_BRIDGE_NF, #endif #ifdef CONFIG_XFRM SKB_EXT_SEC_PATH, #endif #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) TC_SKB_EXT, #endif #if IS_ENABLED(CONFIG_MPTCP) SKB_EXT_MPTCP, #endif #if IS_ENABLED(CONFIG_MCTP_FLOWS) SKB_EXT_MCTP, #endif SKB_EXT_NUM, /* must be last */ }; /** * struct skb_ext - sk_buff extensions * @refcnt: 1 on allocation, deallocated on 0 * @offset: offset to add to @data to obtain extension address * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units * @data: start of extension data, variable sized * * Note: offsets/lengths are stored in chunks of 8 bytes, this allows * to use 'u8' types while allowing up to 2kb worth of extension data. */ struct skb_ext { refcount_t refcnt; u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ u8 chunks; /* same */ char data[] __aligned(8); }; struct skb_ext *__skb_ext_alloc(gfp_t flags); void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, struct skb_ext *ext); void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); void __skb_ext_put(struct skb_ext *ext); static inline void skb_ext_put(struct sk_buff *skb) { if (skb->active_extensions) __skb_ext_put(skb->extensions); } static inline void __skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) { dst->active_extensions = src->active_extensions; if (src->active_extensions) { struct skb_ext *ext = src->extensions; refcount_inc(&ext->refcnt); dst->extensions = ext; } } static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) { skb_ext_put(dst); __skb_ext_copy(dst, src); } static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) { return !!ext->offset[i]; } static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) { return skb->active_extensions & (1 << id); } static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) { if (skb_ext_exist(skb, id)) __skb_ext_del(skb, id); } static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) { if (skb_ext_exist(skb, id)) { struct skb_ext *ext = skb->extensions; return (void *)ext + (ext->offset[id] << 3); } return NULL; } static inline void skb_ext_reset(struct sk_buff *skb) { if (unlikely(skb->active_extensions)) { __skb_ext_put(skb->extensions); skb->active_extensions = 0; } } static inline bool skb_has_extensions(struct sk_buff *skb) { return unlikely(skb->active_extensions); } #else static inline void skb_ext_put(struct sk_buff *skb) {} static inline void skb_ext_reset(struct sk_buff *skb) {} static inline void skb_ext_del(struct sk_buff *skb, int unused) {} static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } #endif /* CONFIG_SKB_EXTENSIONS */ static inline void nf_reset_ct(struct sk_buff *skb) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) nf_conntrack_put(skb_nfct(skb)); skb->_nfct = 0; #endif } static inline void nf_reset_trace(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) skb->nf_trace = 0; #endif } static inline void ipvs_reset(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_IP_VS) skb->ipvs_property = 0; #endif } /* Note: This doesn't put any conntrack info in dst. */ static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, bool copy) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) dst->_nfct = src->_nfct; nf_conntrack_get(skb_nfct(src)); #endif #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) if (copy) dst->nf_trace = src->nf_trace; #endif } static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) nf_conntrack_put(skb_nfct(dst)); #endif dst->slow_gro = src->slow_gro; __nf_copy(dst, src, true); } #ifdef CONFIG_NETWORK_SECMARK static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) { to->secmark = from->secmark; } static inline void skb_init_secmark(struct sk_buff *skb) { skb->secmark = 0; } #else static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) { } static inline void skb_init_secmark(struct sk_buff *skb) { } #endif static inline int secpath_exists(const struct sk_buff *skb) { #ifdef CONFIG_XFRM return skb_ext_exist(skb, SKB_EXT_SEC_PATH); #else return 0; #endif } static inline bool skb_irq_freeable(const struct sk_buff *skb) { return !skb->destructor && !secpath_exists(skb) && !skb_nfct(skb) && !skb->_skb_refdst && !skb_has_frag_list(skb); } static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) { skb->queue_mapping = queue_mapping; } static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) { return skb->queue_mapping; } static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) { to->queue_mapping = from->queue_mapping; } static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) { skb->queue_mapping = rx_queue + 1; } static inline u16 skb_get_rx_queue(const struct sk_buff *skb) { return skb->queue_mapping - 1; } static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) { return skb->queue_mapping != 0; } static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) { skb->dst_pending_confirm = val; } static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) { return skb->dst_pending_confirm != 0; } static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) { #ifdef CONFIG_XFRM return skb_ext_find(skb, SKB_EXT_SEC_PATH); #else return NULL; #endif } static inline bool skb_is_gso(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_size; } /* Note: Should be called only if skb_is_gso(skb) is true */ static inline bool skb_is_gso_v6(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; } /* Note: Should be called only if skb_is_gso(skb) is true */ static inline bool skb_is_gso_sctp(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; } /* Note: Should be called only if skb_is_gso(skb) is true */ static inline bool skb_is_gso_tcp(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); } static inline void skb_gso_reset(struct sk_buff *skb) { skb_shinfo(skb)->gso_size = 0; skb_shinfo(skb)->gso_segs = 0; skb_shinfo(skb)->gso_type = 0; } static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, u16 increment) { if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) return; shinfo->gso_size += increment; } static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, u16 decrement) { if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) return; shinfo->gso_size -= decrement; } void __skb_warn_lro_forwarding(const struct sk_buff *skb); static inline bool skb_warn_if_lro(const struct sk_buff *skb) { /* LRO sets gso_size but not gso_type, whereas if GSO is really * wanted then gso_type will be set. */ const struct skb_shared_info *shinfo = skb_shinfo(skb); if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { __skb_warn_lro_forwarding(skb); return true; } return false; } static inline void skb_forward_csum(struct sk_buff *skb) { /* Unfortunately we don't support this one. Any brave souls? */ if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; } /** * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE * @skb: skb to check * * fresh skbs have their ip_summed set to CHECKSUM_NONE. * Instead of forcing ip_summed to CHECKSUM_NONE, we can * use this helper, to document places where we make this assertion. */ static inline void skb_checksum_none_assert(const struct sk_buff *skb) { DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); } bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); int skb_checksum_setup(struct sk_buff *skb, bool recalculate); struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, unsigned int transport_len, __sum16(*skb_chkf)(struct sk_buff *skb)); /** * skb_head_is_locked - Determine if the skb->head is locked down * @skb: skb to check * * The head on skbs build around a head frag can be removed if they are * not cloned. This function returns true if the skb head is locked down * due to either being allocated via kmalloc, or by being a clone with * multiple references to the head. */ static inline bool skb_head_is_locked(const struct sk_buff *skb) { return !skb->head_frag || skb_cloned(skb); } /* Local Checksum Offload. * Compute outer checksum based on the assumption that the * inner checksum will be offloaded later. * See Documentation/networking/checksum-offloads.rst for * explanation of how this works. * Fill in outer checksum adjustment (e.g. with sum of outer * pseudo-header) before calling. * Also ensure that inner checksum is in linear data area. */ static inline __wsum lco_csum(struct sk_buff *skb) { unsigned char *csum_start = skb_checksum_start(skb); unsigned char *l4_hdr = skb_transport_header(skb); __wsum partial; /* Start with complement of inner checksum adjustment */ partial = ~csum_unfold(*(__force __sum16 *)(csum_start + skb->csum_offset)); /* Add in checksum of our headers (incl. outer checksum * adjustment filled in by caller) and return result. */ return csum_partial(l4_hdr, csum_start - l4_hdr, partial); } static inline bool skb_is_redirected(const struct sk_buff *skb) { return skb->redirected; } static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) { skb->redirected = 1; #ifdef CONFIG_NET_REDIRECT skb->from_ingress = from_ingress; if (skb->from_ingress) skb_clear_tstamp(skb); #endif } static inline void skb_reset_redirect(struct sk_buff *skb) { skb->redirected = 0; } static inline void skb_set_redirected_noclear(struct sk_buff *skb, bool from_ingress) { skb->redirected = 1; #ifdef CONFIG_NET_REDIRECT skb->from_ingress = from_ingress; #endif } static inline bool skb_csum_is_sctp(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_IP_SCTP) return skb->csum_not_inet; #else return 0; #endif } static inline void skb_reset_csum_not_inet(struct sk_buff *skb) { skb->ip_summed = CHECKSUM_NONE; #if IS_ENABLED(CONFIG_IP_SCTP) skb->csum_not_inet = 0; #endif } static inline void skb_set_kcov_handle(struct sk_buff *skb, const u64 kcov_handle) { #ifdef CONFIG_KCOV skb->kcov_handle = kcov_handle; #endif } static inline u64 skb_get_kcov_handle(struct sk_buff *skb) { #ifdef CONFIG_KCOV return skb->kcov_handle; #else return 0; #endif } static inline void skb_mark_for_recycle(struct sk_buff *skb) { #ifdef CONFIG_PAGE_POOL skb->pp_recycle = 1; #endif } ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, ssize_t maxsize, gfp_t gfp); #endif /* __KERNEL__ */ #endif /* _LINUX_SKBUFF_H */