%PDF- %PDF-
Direktori : /usr/lib/modules/6.8.0-45-generic/build/include/linux/ |
Current File : //usr/lib/modules/6.8.0-45-generic/build/include/linux/scatterlist.h |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCATTERLIST_H #define _LINUX_SCATTERLIST_H #include <linux/string.h> #include <linux/types.h> #include <linux/bug.h> #include <linux/mm.h> #include <asm/io.h> struct scatterlist { unsigned long page_link; unsigned int offset; unsigned int length; dma_addr_t dma_address; #ifdef CONFIG_NEED_SG_DMA_LENGTH unsigned int dma_length; #endif #ifdef CONFIG_NEED_SG_DMA_FLAGS unsigned int dma_flags; #endif }; /* * These macros should be used after a dma_map_sg call has been done * to get bus addresses of each of the SG entries and their lengths. * You should only work with the number of sg entries dma_map_sg * returns, or alternatively stop on the first sg_dma_len(sg) which * is 0. */ #define sg_dma_address(sg) ((sg)->dma_address) #ifdef CONFIG_NEED_SG_DMA_LENGTH #define sg_dma_len(sg) ((sg)->dma_length) #else #define sg_dma_len(sg) ((sg)->length) #endif struct sg_table { struct scatterlist *sgl; /* the list */ unsigned int nents; /* number of mapped entries */ unsigned int orig_nents; /* original size of list */ }; struct sg_append_table { struct sg_table sgt; /* The scatter list table */ struct scatterlist *prv; /* last populated sge in the table */ unsigned int total_nents; /* Total entries in the table */ }; /* * Notes on SG table design. * * We use the unsigned long page_link field in the scatterlist struct to place * the page pointer AND encode information about the sg table as well. The two * lower bits are reserved for this information. * * If bit 0 is set, then the page_link contains a pointer to the next sg * table list. Otherwise the next entry is at sg + 1. * * If bit 1 is set, then this sg entry is the last element in a list. * * See sg_next(). * */ #define SG_CHAIN 0x01UL #define SG_END 0x02UL /* * We overload the LSB of the page pointer to indicate whether it's * a valid sg entry, or whether it points to the start of a new scatterlist. * Those low bits are there for everyone! (thanks mason :-) */ #define SG_PAGE_LINK_MASK (SG_CHAIN | SG_END) static inline unsigned int __sg_flags(struct scatterlist *sg) { return sg->page_link & SG_PAGE_LINK_MASK; } static inline struct scatterlist *sg_chain_ptr(struct scatterlist *sg) { return (struct scatterlist *)(sg->page_link & ~SG_PAGE_LINK_MASK); } static inline bool sg_is_chain(struct scatterlist *sg) { return __sg_flags(sg) & SG_CHAIN; } static inline bool sg_is_last(struct scatterlist *sg) { return __sg_flags(sg) & SG_END; } /** * sg_assign_page - Assign a given page to an SG entry * @sg: SG entry * @page: The page * * Description: * Assign page to sg entry. Also see sg_set_page(), the most commonly used * variant. * **/ static inline void sg_assign_page(struct scatterlist *sg, struct page *page) { unsigned long page_link = sg->page_link & (SG_CHAIN | SG_END); /* * In order for the low bit stealing approach to work, pages * must be aligned at a 32-bit boundary as a minimum. */ BUG_ON((unsigned long)page & SG_PAGE_LINK_MASK); #ifdef CONFIG_DEBUG_SG BUG_ON(sg_is_chain(sg)); #endif sg->page_link = page_link | (unsigned long) page; } /** * sg_set_page - Set sg entry to point at given page * @sg: SG entry * @page: The page * @len: Length of data * @offset: Offset into page * * Description: * Use this function to set an sg entry pointing at a page, never assign * the page directly. We encode sg table information in the lower bits * of the page pointer. See sg_page() for looking up the page belonging * to an sg entry. * **/ static inline void sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len, unsigned int offset) { sg_assign_page(sg, page); sg->offset = offset; sg->length = len; } /** * sg_set_folio - Set sg entry to point at given folio * @sg: SG entry * @folio: The folio * @len: Length of data * @offset: Offset into folio * * Description: * Use this function to set an sg entry pointing at a folio, never assign * the folio directly. We encode sg table information in the lower bits * of the folio pointer. See sg_page() for looking up the page belonging * to an sg entry. * **/ static inline void sg_set_folio(struct scatterlist *sg, struct folio *folio, size_t len, size_t offset) { WARN_ON_ONCE(len > UINT_MAX); WARN_ON_ONCE(offset > UINT_MAX); sg_assign_page(sg, &folio->page); sg->offset = offset; sg->length = len; } static inline struct page *sg_page(struct scatterlist *sg) { #ifdef CONFIG_DEBUG_SG BUG_ON(sg_is_chain(sg)); #endif return (struct page *)((sg)->page_link & ~SG_PAGE_LINK_MASK); } /** * sg_set_buf - Set sg entry to point at given data * @sg: SG entry * @buf: Data * @buflen: Data length * **/ static inline void sg_set_buf(struct scatterlist *sg, const void *buf, unsigned int buflen) { #ifdef CONFIG_DEBUG_SG BUG_ON(!virt_addr_valid(buf)); #endif sg_set_page(sg, virt_to_page(buf), buflen, offset_in_page(buf)); } /* * Loop over each sg element, following the pointer to a new list if necessary */ #define for_each_sg(sglist, sg, nr, __i) \ for (__i = 0, sg = (sglist); __i < (nr); __i++, sg = sg_next(sg)) /* * Loop over each sg element in the given sg_table object. */ #define for_each_sgtable_sg(sgt, sg, i) \ for_each_sg((sgt)->sgl, sg, (sgt)->orig_nents, i) /* * Loop over each sg element in the given *DMA mapped* sg_table object. * Please use sg_dma_address(sg) and sg_dma_len(sg) to extract DMA addresses * of the each element. */ #define for_each_sgtable_dma_sg(sgt, sg, i) \ for_each_sg((sgt)->sgl, sg, (sgt)->nents, i) static inline void __sg_chain(struct scatterlist *chain_sg, struct scatterlist *sgl) { /* * offset and length are unused for chain entry. Clear them. */ chain_sg->offset = 0; chain_sg->length = 0; /* * Set lowest bit to indicate a link pointer, and make sure to clear * the termination bit if it happens to be set. */ chain_sg->page_link = ((unsigned long) sgl | SG_CHAIN) & ~SG_END; } /** * sg_chain - Chain two sglists together * @prv: First scatterlist * @prv_nents: Number of entries in prv * @sgl: Second scatterlist * * Description: * Links @prv@ and @sgl@ together, to form a longer scatterlist. * **/ static inline void sg_chain(struct scatterlist *prv, unsigned int prv_nents, struct scatterlist *sgl) { __sg_chain(&prv[prv_nents - 1], sgl); } /** * sg_mark_end - Mark the end of the scatterlist * @sg: SG entryScatterlist * * Description: * Marks the passed in sg entry as the termination point for the sg * table. A call to sg_next() on this entry will return NULL. * **/ static inline void sg_mark_end(struct scatterlist *sg) { /* * Set termination bit, clear potential chain bit */ sg->page_link |= SG_END; sg->page_link &= ~SG_CHAIN; } /** * sg_unmark_end - Undo setting the end of the scatterlist * @sg: SG entryScatterlist * * Description: * Removes the termination marker from the given entry of the scatterlist. * **/ static inline void sg_unmark_end(struct scatterlist *sg) { sg->page_link &= ~SG_END; } /* * One 64-bit architectures there is a 4-byte padding in struct scatterlist * (assuming also CONFIG_NEED_SG_DMA_LENGTH is set). Use this padding for DMA * flags bits to indicate when a specific dma address is a bus address or the * buffer may have been bounced via SWIOTLB. */ #ifdef CONFIG_NEED_SG_DMA_FLAGS #define SG_DMA_BUS_ADDRESS (1 << 0) #define SG_DMA_SWIOTLB (1 << 1) /** * sg_dma_is_bus_address - Return whether a given segment was marked * as a bus address * @sg: SG entry * * Description: * Returns true if sg_dma_mark_bus_address() has been called on * this segment. **/ static inline bool sg_dma_is_bus_address(struct scatterlist *sg) { return sg->dma_flags & SG_DMA_BUS_ADDRESS; } /** * sg_dma_mark_bus_address - Mark the scatterlist entry as a bus address * @sg: SG entry * * Description: * Marks the passed in sg entry to indicate that the dma_address is * a bus address and doesn't need to be unmapped. This should only be * used by dma_map_sg() implementations to mark bus addresses * so they can be properly cleaned up in dma_unmap_sg(). **/ static inline void sg_dma_mark_bus_address(struct scatterlist *sg) { sg->dma_flags |= SG_DMA_BUS_ADDRESS; } /** * sg_unmark_bus_address - Unmark the scatterlist entry as a bus address * @sg: SG entry * * Description: * Clears the bus address mark. **/ static inline void sg_dma_unmark_bus_address(struct scatterlist *sg) { sg->dma_flags &= ~SG_DMA_BUS_ADDRESS; } /** * sg_dma_is_swiotlb - Return whether the scatterlist was marked for SWIOTLB * bouncing * @sg: SG entry * * Description: * Returns true if the scatterlist was marked for SWIOTLB bouncing. Not all * elements may have been bounced, so the caller would have to check * individual SG entries with is_swiotlb_buffer(). */ static inline bool sg_dma_is_swiotlb(struct scatterlist *sg) { return sg->dma_flags & SG_DMA_SWIOTLB; } /** * sg_dma_mark_swiotlb - Mark the scatterlist for SWIOTLB bouncing * @sg: SG entry * * Description: * Marks a a scatterlist for SWIOTLB bounce. Not all SG entries may be * bounced. */ static inline void sg_dma_mark_swiotlb(struct scatterlist *sg) { sg->dma_flags |= SG_DMA_SWIOTLB; } #else static inline bool sg_dma_is_bus_address(struct scatterlist *sg) { return false; } static inline void sg_dma_mark_bus_address(struct scatterlist *sg) { } static inline void sg_dma_unmark_bus_address(struct scatterlist *sg) { } static inline bool sg_dma_is_swiotlb(struct scatterlist *sg) { return false; } static inline void sg_dma_mark_swiotlb(struct scatterlist *sg) { } #endif /* CONFIG_NEED_SG_DMA_FLAGS */ /** * sg_phys - Return physical address of an sg entry * @sg: SG entry * * Description: * This calls page_to_phys() on the page in this sg entry, and adds the * sg offset. The caller must know that it is legal to call page_to_phys() * on the sg page. * **/ static inline dma_addr_t sg_phys(struct scatterlist *sg) { return page_to_phys(sg_page(sg)) + sg->offset; } /** * sg_virt - Return virtual address of an sg entry * @sg: SG entry * * Description: * This calls page_address() on the page in this sg entry, and adds the * sg offset. The caller must know that the sg page has a valid virtual * mapping. * **/ static inline void *sg_virt(struct scatterlist *sg) { return page_address(sg_page(sg)) + sg->offset; } /** * sg_init_marker - Initialize markers in sg table * @sgl: The SG table * @nents: Number of entries in table * **/ static inline void sg_init_marker(struct scatterlist *sgl, unsigned int nents) { sg_mark_end(&sgl[nents - 1]); } int sg_nents(struct scatterlist *sg); int sg_nents_for_len(struct scatterlist *sg, u64 len); struct scatterlist *sg_next(struct scatterlist *); struct scatterlist *sg_last(struct scatterlist *s, unsigned int); void sg_init_table(struct scatterlist *, unsigned int); void sg_init_one(struct scatterlist *, const void *, unsigned int); int sg_split(struct scatterlist *in, const int in_mapped_nents, const off_t skip, const int nb_splits, const size_t *split_sizes, struct scatterlist **out, int *out_mapped_nents, gfp_t gfp_mask); typedef struct scatterlist *(sg_alloc_fn)(unsigned int, gfp_t); typedef void (sg_free_fn)(struct scatterlist *, unsigned int); void __sg_free_table(struct sg_table *, unsigned int, unsigned int, sg_free_fn *, unsigned int); void sg_free_table(struct sg_table *); void sg_free_append_table(struct sg_append_table *sgt); int __sg_alloc_table(struct sg_table *, unsigned int, unsigned int, struct scatterlist *, unsigned int, gfp_t, sg_alloc_fn *); int sg_alloc_table(struct sg_table *, unsigned int, gfp_t); int sg_alloc_append_table_from_pages(struct sg_append_table *sgt, struct page **pages, unsigned int n_pages, unsigned int offset, unsigned long size, unsigned int max_segment, unsigned int left_pages, gfp_t gfp_mask); int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages, unsigned int n_pages, unsigned int offset, unsigned long size, unsigned int max_segment, gfp_t gfp_mask); /** * sg_alloc_table_from_pages - Allocate and initialize an sg table from * an array of pages * @sgt: The sg table header to use * @pages: Pointer to an array of page pointers * @n_pages: Number of pages in the pages array * @offset: Offset from start of the first page to the start of a buffer * @size: Number of valid bytes in the buffer (after offset) * @gfp_mask: GFP allocation mask * * Description: * Allocate and initialize an sg table from a list of pages. Contiguous * ranges of the pages are squashed into a single scatterlist node. A user * may provide an offset at a start and a size of valid data in a buffer * specified by the page array. The returned sg table is released by * sg_free_table. * * Returns: * 0 on success, negative error on failure */ static inline int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages, unsigned int n_pages, unsigned int offset, unsigned long size, gfp_t gfp_mask) { return sg_alloc_table_from_pages_segment(sgt, pages, n_pages, offset, size, UINT_MAX, gfp_mask); } #ifdef CONFIG_SGL_ALLOC struct scatterlist *sgl_alloc_order(unsigned long long length, unsigned int order, bool chainable, gfp_t gfp, unsigned int *nent_p); struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp, unsigned int *nent_p); void sgl_free_n_order(struct scatterlist *sgl, int nents, int order); void sgl_free_order(struct scatterlist *sgl, int order); void sgl_free(struct scatterlist *sgl); #endif /* CONFIG_SGL_ALLOC */ size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen, off_t skip, bool to_buffer); size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, const void *buf, size_t buflen); size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen); size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents, const void *buf, size_t buflen, off_t skip); size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen, off_t skip); size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents, size_t buflen, off_t skip); /* * Maximum number of entries that will be allocated in one piece, if * a list larger than this is required then chaining will be utilized. */ #define SG_MAX_SINGLE_ALLOC (PAGE_SIZE / sizeof(struct scatterlist)) /* * The maximum number of SG segments that we will put inside a * scatterlist (unless chaining is used). Should ideally fit inside a * single page, to avoid a higher order allocation. We could define this * to SG_MAX_SINGLE_ALLOC to pack correctly at the highest order. The * minimum value is 32 */ #define SG_CHUNK_SIZE 128 /* * Like SG_CHUNK_SIZE, but for archs that have sg chaining. This limit * is totally arbitrary, a setting of 2048 will get you at least 8mb ios. */ #ifdef CONFIG_ARCH_NO_SG_CHAIN #define SG_MAX_SEGMENTS SG_CHUNK_SIZE #else #define SG_MAX_SEGMENTS 2048 #endif #ifdef CONFIG_SG_POOL void sg_free_table_chained(struct sg_table *table, unsigned nents_first_chunk); int sg_alloc_table_chained(struct sg_table *table, int nents, struct scatterlist *first_chunk, unsigned nents_first_chunk); #endif /* * sg page iterator * * Iterates over sg entries page-by-page. On each successful iteration, you * can call sg_page_iter_page(@piter) to get the current page. * @piter->sg will point to the sg holding this page and @piter->sg_pgoffset to * the page's page offset within the sg. The iteration will stop either when a * maximum number of sg entries was reached or a terminating sg * (sg_last(sg) == true) was reached. */ struct sg_page_iter { struct scatterlist *sg; /* sg holding the page */ unsigned int sg_pgoffset; /* page offset within the sg */ /* these are internal states, keep away */ unsigned int __nents; /* remaining sg entries */ int __pg_advance; /* nr pages to advance at the * next step */ }; /* * sg page iterator for DMA addresses * * This is the same as sg_page_iter however you can call * sg_page_iter_dma_address(@dma_iter) to get the page's DMA * address. sg_page_iter_page() cannot be called on this iterator. */ struct sg_dma_page_iter { struct sg_page_iter base; }; bool __sg_page_iter_next(struct sg_page_iter *piter); bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter); void __sg_page_iter_start(struct sg_page_iter *piter, struct scatterlist *sglist, unsigned int nents, unsigned long pgoffset); /** * sg_page_iter_page - get the current page held by the page iterator * @piter: page iterator holding the page */ static inline struct page *sg_page_iter_page(struct sg_page_iter *piter) { return nth_page(sg_page(piter->sg), piter->sg_pgoffset); } /** * sg_page_iter_dma_address - get the dma address of the current page held by * the page iterator. * @dma_iter: page iterator holding the page */ static inline dma_addr_t sg_page_iter_dma_address(struct sg_dma_page_iter *dma_iter) { return sg_dma_address(dma_iter->base.sg) + (dma_iter->base.sg_pgoffset << PAGE_SHIFT); } /** * for_each_sg_page - iterate over the pages of the given sg list * @sglist: sglist to iterate over * @piter: page iterator to hold current page, sg, sg_pgoffset * @nents: maximum number of sg entries to iterate over * @pgoffset: starting page offset (in pages) * * Callers may use sg_page_iter_page() to get each page pointer. * In each loop it operates on PAGE_SIZE unit. */ #define for_each_sg_page(sglist, piter, nents, pgoffset) \ for (__sg_page_iter_start((piter), (sglist), (nents), (pgoffset)); \ __sg_page_iter_next(piter);) /** * for_each_sg_dma_page - iterate over the pages of the given sg list * @sglist: sglist to iterate over * @dma_iter: DMA page iterator to hold current page * @dma_nents: maximum number of sg entries to iterate over, this is the value * returned from dma_map_sg * @pgoffset: starting page offset (in pages) * * Callers may use sg_page_iter_dma_address() to get each page's DMA address. * In each loop it operates on PAGE_SIZE unit. */ #define for_each_sg_dma_page(sglist, dma_iter, dma_nents, pgoffset) \ for (__sg_page_iter_start(&(dma_iter)->base, sglist, dma_nents, \ pgoffset); \ __sg_page_iter_dma_next(dma_iter);) /** * for_each_sgtable_page - iterate over all pages in the sg_table object * @sgt: sg_table object to iterate over * @piter: page iterator to hold current page * @pgoffset: starting page offset (in pages) * * Iterates over the all memory pages in the buffer described by * a scatterlist stored in the given sg_table object. * See also for_each_sg_page(). In each loop it operates on PAGE_SIZE unit. */ #define for_each_sgtable_page(sgt, piter, pgoffset) \ for_each_sg_page((sgt)->sgl, piter, (sgt)->orig_nents, pgoffset) /** * for_each_sgtable_dma_page - iterate over the DMA mapped sg_table object * @sgt: sg_table object to iterate over * @dma_iter: DMA page iterator to hold current page * @pgoffset: starting page offset (in pages) * * Iterates over the all DMA mapped pages in the buffer described by * a scatterlist stored in the given sg_table object. * See also for_each_sg_dma_page(). In each loop it operates on PAGE_SIZE * unit. */ #define for_each_sgtable_dma_page(sgt, dma_iter, pgoffset) \ for_each_sg_dma_page((sgt)->sgl, dma_iter, (sgt)->nents, pgoffset) /* * Mapping sg iterator * * Iterates over sg entries mapping page-by-page. On each successful * iteration, @miter->page points to the mapped page and * @miter->length bytes of data can be accessed at @miter->addr. As * long as an iteration is enclosed between start and stop, the user * is free to choose control structure and when to stop. * * @miter->consumed is set to @miter->length on each iteration. It * can be adjusted if the user can't consume all the bytes in one go. * Also, a stopped iteration can be resumed by calling next on it. * This is useful when iteration needs to release all resources and * continue later (e.g. at the next interrupt). */ #define SG_MITER_ATOMIC (1 << 0) /* use kmap_atomic */ #define SG_MITER_TO_SG (1 << 1) /* flush back to phys on unmap */ #define SG_MITER_FROM_SG (1 << 2) /* nop */ struct sg_mapping_iter { /* the following three fields can be accessed directly */ struct page *page; /* currently mapped page */ void *addr; /* pointer to the mapped area */ size_t length; /* length of the mapped area */ size_t consumed; /* number of consumed bytes */ struct sg_page_iter piter; /* page iterator */ /* these are internal states, keep away */ unsigned int __offset; /* offset within page */ unsigned int __remaining; /* remaining bytes on page */ unsigned int __flags; }; void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl, unsigned int nents, unsigned int flags); bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset); bool sg_miter_next(struct sg_mapping_iter *miter); void sg_miter_stop(struct sg_mapping_iter *miter); #endif /* _LINUX_SCATTERLIST_H */