%PDF- %PDF-
Direktori : /usr/lib/modules/6.8.0-45-generic/build/include/linux/ |
Current File : //usr/lib/modules/6.8.0-45-generic/build/include/linux/preempt.h |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_PREEMPT_H #define __LINUX_PREEMPT_H /* * include/linux/preempt.h - macros for accessing and manipulating * preempt_count (used for kernel preemption, interrupt count, etc.) */ #include <linux/linkage.h> #include <linux/cleanup.h> #include <linux/types.h> /* * We put the hardirq and softirq counter into the preemption * counter. The bitmask has the following meaning: * * - bits 0-7 are the preemption count (max preemption depth: 256) * - bits 8-15 are the softirq count (max # of softirqs: 256) * * The hardirq count could in theory be the same as the number of * interrupts in the system, but we run all interrupt handlers with * interrupts disabled, so we cannot have nesting interrupts. Though * there are a few palaeontologic drivers which reenable interrupts in * the handler, so we need more than one bit here. * * PREEMPT_MASK: 0x000000ff * SOFTIRQ_MASK: 0x0000ff00 * HARDIRQ_MASK: 0x000f0000 * NMI_MASK: 0x00f00000 * PREEMPT_NEED_RESCHED: 0x80000000 */ #define PREEMPT_BITS 8 #define SOFTIRQ_BITS 8 #define HARDIRQ_BITS 4 #define NMI_BITS 4 #define PREEMPT_SHIFT 0 #define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS) #define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS) #define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS) #define __IRQ_MASK(x) ((1UL << (x))-1) #define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT) #define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT) #define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT) #define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT) #define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT) #define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT) #define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT) #define NMI_OFFSET (1UL << NMI_SHIFT) #define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET) #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) /* * Disable preemption until the scheduler is running -- use an unconditional * value so that it also works on !PREEMPT_COUNT kernels. * * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). */ #define INIT_PREEMPT_COUNT PREEMPT_OFFSET /* * Initial preempt_count value; reflects the preempt_count schedule invariant * which states that during context switches: * * preempt_count() == 2*PREEMPT_DISABLE_OFFSET * * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. * Note: See finish_task_switch(). */ #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) /* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */ #include <asm/preempt.h> /** * interrupt_context_level - return interrupt context level * * Returns the current interrupt context level. * 0 - normal context * 1 - softirq context * 2 - hardirq context * 3 - NMI context */ static __always_inline unsigned char interrupt_context_level(void) { unsigned long pc = preempt_count(); unsigned char level = 0; level += !!(pc & (NMI_MASK)); level += !!(pc & (NMI_MASK | HARDIRQ_MASK)); level += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)); return level; } /* * These macro definitions avoid redundant invocations of preempt_count() * because such invocations would result in redundant loads given that * preempt_count() is commonly implemented with READ_ONCE(). */ #define nmi_count() (preempt_count() & NMI_MASK) #define hardirq_count() (preempt_count() & HARDIRQ_MASK) #ifdef CONFIG_PREEMPT_RT # define softirq_count() (current->softirq_disable_cnt & SOFTIRQ_MASK) # define irq_count() ((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | softirq_count()) #else # define softirq_count() (preempt_count() & SOFTIRQ_MASK) # define irq_count() (preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_MASK)) #endif /* * Macros to retrieve the current execution context: * * in_nmi() - We're in NMI context * in_hardirq() - We're in hard IRQ context * in_serving_softirq() - We're in softirq context * in_task() - We're in task context */ #define in_nmi() (nmi_count()) #define in_hardirq() (hardirq_count()) #define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) #ifdef CONFIG_PREEMPT_RT # define in_task() (!((preempt_count() & (NMI_MASK | HARDIRQ_MASK)) | in_serving_softirq())) #else # define in_task() (!(preempt_count() & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET))) #endif /* * The following macros are deprecated and should not be used in new code: * in_irq() - Obsolete version of in_hardirq() * in_softirq() - We have BH disabled, or are processing softirqs * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled */ #define in_irq() (hardirq_count()) #define in_softirq() (softirq_count()) #define in_interrupt() (irq_count()) /* * The preempt_count offset after preempt_disable(); */ #if defined(CONFIG_PREEMPT_COUNT) # define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET #else # define PREEMPT_DISABLE_OFFSET 0 #endif /* * The preempt_count offset after spin_lock() */ #if !defined(CONFIG_PREEMPT_RT) #define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET #else /* Locks on RT do not disable preemption */ #define PREEMPT_LOCK_OFFSET 0 #endif /* * The preempt_count offset needed for things like: * * spin_lock_bh() * * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and * softirqs, such that unlock sequences of: * * spin_unlock(); * local_bh_enable(); * * Work as expected. */ #define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET) /* * Are we running in atomic context? WARNING: this macro cannot * always detect atomic context; in particular, it cannot know about * held spinlocks in non-preemptible kernels. Thus it should not be * used in the general case to determine whether sleeping is possible. * Do not use in_atomic() in driver code. */ #define in_atomic() (preempt_count() != 0) /* * Check whether we were atomic before we did preempt_disable(): * (used by the scheduler) */ #define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET) #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) extern void preempt_count_add(int val); extern void preempt_count_sub(int val); #define preempt_count_dec_and_test() \ ({ preempt_count_sub(1); should_resched(0); }) #else #define preempt_count_add(val) __preempt_count_add(val) #define preempt_count_sub(val) __preempt_count_sub(val) #define preempt_count_dec_and_test() __preempt_count_dec_and_test() #endif #define __preempt_count_inc() __preempt_count_add(1) #define __preempt_count_dec() __preempt_count_sub(1) #define preempt_count_inc() preempt_count_add(1) #define preempt_count_dec() preempt_count_sub(1) #ifdef CONFIG_PREEMPT_COUNT #define preempt_disable() \ do { \ preempt_count_inc(); \ barrier(); \ } while (0) #define sched_preempt_enable_no_resched() \ do { \ barrier(); \ preempt_count_dec(); \ } while (0) #define preempt_enable_no_resched() sched_preempt_enable_no_resched() #define preemptible() (preempt_count() == 0 && !irqs_disabled()) #ifdef CONFIG_PREEMPTION #define preempt_enable() \ do { \ barrier(); \ if (unlikely(preempt_count_dec_and_test())) \ __preempt_schedule(); \ } while (0) #define preempt_enable_notrace() \ do { \ barrier(); \ if (unlikely(__preempt_count_dec_and_test())) \ __preempt_schedule_notrace(); \ } while (0) #define preempt_check_resched() \ do { \ if (should_resched(0)) \ __preempt_schedule(); \ } while (0) #else /* !CONFIG_PREEMPTION */ #define preempt_enable() \ do { \ barrier(); \ preempt_count_dec(); \ } while (0) #define preempt_enable_notrace() \ do { \ barrier(); \ __preempt_count_dec(); \ } while (0) #define preempt_check_resched() do { } while (0) #endif /* CONFIG_PREEMPTION */ #define preempt_disable_notrace() \ do { \ __preempt_count_inc(); \ barrier(); \ } while (0) #define preempt_enable_no_resched_notrace() \ do { \ barrier(); \ __preempt_count_dec(); \ } while (0) #else /* !CONFIG_PREEMPT_COUNT */ /* * Even if we don't have any preemption, we need preempt disable/enable * to be barriers, so that we don't have things like get_user/put_user * that can cause faults and scheduling migrate into our preempt-protected * region. */ #define preempt_disable() barrier() #define sched_preempt_enable_no_resched() barrier() #define preempt_enable_no_resched() barrier() #define preempt_enable() barrier() #define preempt_check_resched() do { } while (0) #define preempt_disable_notrace() barrier() #define preempt_enable_no_resched_notrace() barrier() #define preempt_enable_notrace() barrier() #define preemptible() 0 #endif /* CONFIG_PREEMPT_COUNT */ #ifdef MODULE /* * Modules have no business playing preemption tricks. */ #undef sched_preempt_enable_no_resched #undef preempt_enable_no_resched #undef preempt_enable_no_resched_notrace #undef preempt_check_resched #endif #define preempt_set_need_resched() \ do { \ set_preempt_need_resched(); \ } while (0) #define preempt_fold_need_resched() \ do { \ if (tif_need_resched()) \ set_preempt_need_resched(); \ } while (0) #ifdef CONFIG_PREEMPT_NOTIFIERS struct preempt_notifier; /** * preempt_ops - notifiers called when a task is preempted and rescheduled * @sched_in: we're about to be rescheduled: * notifier: struct preempt_notifier for the task being scheduled * cpu: cpu we're scheduled on * @sched_out: we've just been preempted * notifier: struct preempt_notifier for the task being preempted * next: the task that's kicking us out * * Please note that sched_in and out are called under different * contexts. sched_out is called with rq lock held and irq disabled * while sched_in is called without rq lock and irq enabled. This * difference is intentional and depended upon by its users. */ struct preempt_ops { void (*sched_in)(struct preempt_notifier *notifier, int cpu); void (*sched_out)(struct preempt_notifier *notifier, struct task_struct *next); }; /** * preempt_notifier - key for installing preemption notifiers * @link: internal use * @ops: defines the notifier functions to be called * * Usually used in conjunction with container_of(). */ struct preempt_notifier { struct hlist_node link; struct preempt_ops *ops; }; void preempt_notifier_inc(void); void preempt_notifier_dec(void); void preempt_notifier_register(struct preempt_notifier *notifier); void preempt_notifier_unregister(struct preempt_notifier *notifier); static inline void preempt_notifier_init(struct preempt_notifier *notifier, struct preempt_ops *ops) { /* INIT_HLIST_NODE() open coded, to avoid dependency on list.h */ notifier->link.next = NULL; notifier->link.pprev = NULL; notifier->ops = ops; } #endif #ifdef CONFIG_SMP /* * Migrate-Disable and why it is undesired. * * When a preempted task becomes elegible to run under the ideal model (IOW it * becomes one of the M highest priority tasks), it might still have to wait * for the preemptee's migrate_disable() section to complete. Thereby suffering * a reduction in bandwidth in the exact duration of the migrate_disable() * section. * * Per this argument, the change from preempt_disable() to migrate_disable() * gets us: * * - a higher priority tasks gains reduced wake-up latency; with preempt_disable() * it would have had to wait for the lower priority task. * * - a lower priority tasks; which under preempt_disable() could've instantly * migrated away when another CPU becomes available, is now constrained * by the ability to push the higher priority task away, which might itself be * in a migrate_disable() section, reducing it's available bandwidth. * * IOW it trades latency / moves the interference term, but it stays in the * system, and as long as it remains unbounded, the system is not fully * deterministic. * * * The reason we have it anyway. * * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a * number of primitives into becoming preemptible, they would also allow * migration. This turns out to break a bunch of per-cpu usage. To this end, * all these primitives employ migirate_disable() to restore this implicit * assumption. * * This is a 'temporary' work-around at best. The correct solution is getting * rid of the above assumptions and reworking the code to employ explicit * per-cpu locking or short preempt-disable regions. * * The end goal must be to get rid of migrate_disable(), alternatively we need * a schedulability theory that does not depend on abritrary migration. * * * Notes on the implementation. * * The implementation is particularly tricky since existing code patterns * dictate neither migrate_disable() nor migrate_enable() is allowed to block. * This means that it cannot use cpus_read_lock() to serialize against hotplug, * nor can it easily migrate itself into a pending affinity mask change on * migrate_enable(). * * * Note: even non-work-conserving schedulers like semi-partitioned depends on * migration, so migrate_disable() is not only a problem for * work-conserving schedulers. * */ extern void migrate_disable(void); extern void migrate_enable(void); #else static inline void migrate_disable(void) { } static inline void migrate_enable(void) { } #endif /* CONFIG_SMP */ /** * preempt_disable_nested - Disable preemption inside a normally preempt disabled section * * Use for code which requires preemption protection inside a critical * section which has preemption disabled implicitly on non-PREEMPT_RT * enabled kernels, by e.g.: * - holding a spinlock/rwlock * - soft interrupt context * - regular interrupt handlers * * On PREEMPT_RT enabled kernels spinlock/rwlock held sections, soft * interrupt context and regular interrupt handlers are preemptible and * only prevent migration. preempt_disable_nested() ensures that preemption * is disabled for cases which require CPU local serialization even on * PREEMPT_RT. For non-PREEMPT_RT kernels this is a NOP. * * The use cases are code sequences which are not serialized by a * particular lock instance, e.g.: * - seqcount write side critical sections where the seqcount is not * associated to a particular lock and therefore the automatic * protection mechanism does not work. This prevents a live lock * against a preempting high priority reader. * - RMW per CPU variable updates like vmstat. */ /* Macro to avoid header recursion hell vs. lockdep */ #define preempt_disable_nested() \ do { \ if (IS_ENABLED(CONFIG_PREEMPT_RT)) \ preempt_disable(); \ else \ lockdep_assert_preemption_disabled(); \ } while (0) /** * preempt_enable_nested - Undo the effect of preempt_disable_nested() */ static __always_inline void preempt_enable_nested(void) { if (IS_ENABLED(CONFIG_PREEMPT_RT)) preempt_enable(); } DEFINE_LOCK_GUARD_0(preempt, preempt_disable(), preempt_enable()) DEFINE_LOCK_GUARD_0(preempt_notrace, preempt_disable_notrace(), preempt_enable_notrace()) DEFINE_LOCK_GUARD_0(migrate, migrate_disable(), migrate_enable()) #endif /* __LINUX_PREEMPT_H */