%PDF- %PDF-
Direktori : /lib/python3/dist-packages/twisted/protocols/test/ |
Current File : //lib/python3/dist-packages/twisted/protocols/test/test_tls.py |
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.protocols.tls}. """ from __future__ import annotations import gc from typing import Union from zope.interface import Interface, directlyProvides, implementer from zope.interface.verify import verifyObject from hypothesis import given, strategies as st from twisted.internet import reactor from twisted.internet.task import Clock, deferLater from twisted.python.compat import iterbytes try: from OpenSSL import crypto from OpenSSL.SSL import ( SSL_CB_HANDSHAKE_DONE, TLS_METHOD, Connection, Context, Error, TLSv1_1_METHOD, TLSv1_2_METHOD, TLSv1_METHOD, WantReadError, ) from twisted.protocols.tls import ( TLSMemoryBIOFactory, TLSMemoryBIOProtocol, _AggregateSmallWrites, _ProducerMembrane, _PullToPush, ) except ImportError: # Skip the whole test module if it can't be imported. skip = "pyOpenSSL 16.0.0 or newer required for twisted.protocol.tls" TLS_METHOD = TLSv1_METHOD = TLSv1_1_METHOD = TLSv1_2_METHOD = None # type: ignore[assignment] else: from twisted.internet.ssl import PrivateCertificate, optionsForClientTLS from twisted.test.ssl_helpers import ClientTLSContext, ServerTLSContext, certPath from twisted.test.test_sslverify import certificatesForAuthorityAndServer from twisted.internet.defer import Deferred, gatherResults from twisted.internet.error import ConnectionDone, ConnectionLost from twisted.internet.interfaces import ( IHandshakeListener, IOpenSSLClientConnectionCreator, IOpenSSLServerConnectionCreator, IProtocolNegotiationFactory, IPushProducer, ISSLTransport, ISystemHandle, ) from twisted.internet.protocol import ClientFactory, Factory, Protocol, ServerFactory from twisted.internet.task import TaskStopped from twisted.internet.testing import NonStreamingProducer, StringTransport from twisted.protocols.loopback import collapsingPumpPolicy, loopbackAsync from twisted.python import log from twisted.python.failure import Failure from twisted.python.filepath import FilePath from twisted.test.iosim import connectedServerAndClient from twisted.test.test_tcp import ConnectionLostNotifyingProtocol from twisted.trial.unittest import SynchronousTestCase, TestCase class HandshakeCallbackContextFactory: """ L{HandshakeCallbackContextFactory} is a factory for SSL contexts which allows applications to get notification when the SSL handshake completes. @ivar _finished: A L{Deferred} which will be called back when the handshake is done. """ def __init__(self, method=TLS_METHOD): self._finished = Deferred() self._method = method @classmethod def factoryAndDeferred(cls): """ Create a new L{HandshakeCallbackContextFactory} and return a two-tuple of it and a L{Deferred} which will fire when a connection created with it completes a TLS handshake. """ contextFactory = cls() return contextFactory, contextFactory._finished def _info(self, connection, where, ret): """ This is the "info callback" on the context. It will be called periodically by pyOpenSSL with information about the state of a connection. When it indicates the handshake is complete, it will fire C{self._finished}. """ if where & SSL_CB_HANDSHAKE_DONE: self._finished.callback(None) def getContext(self): """ Create and return an SSL context configured to use L{self._info} as the info callback. """ context = Context(self._method) context.set_info_callback(self._info) return context class AccumulatingProtocol(Protocol): """ A protocol which collects the bytes it receives and closes its connection after receiving a certain minimum of data. @ivar howMany: The number of bytes of data to wait for before closing the connection. @ivar received: A L{list} of L{bytes} of the bytes received so far. """ def __init__(self, howMany): self.howMany = howMany def connectionMade(self): self.received = [] def dataReceived(self, data): self.received.append(data) if sum(map(len, self.received)) >= self.howMany: self.transport.loseConnection() def connectionLost(self, reason): if not reason.check(ConnectionDone): log.err(reason) def buildTLSProtocol( server=False, transport=None, fakeConnection=None, serverMethod=None ): """ Create a protocol hooked up to a TLS transport hooked up to a StringTransport. @param serverMethod: The TLS method accepted by the server-side and used by the created protocol. Set to to C{None} to use the default method used by your OpenSSL library. """ # We want to accumulate bytes without disconnecting, so set high limit: clientProtocol = AccumulatingProtocol(999999999999) clientFactory = ClientFactory() clientFactory.protocol = lambda: clientProtocol if fakeConnection: @implementer(IOpenSSLServerConnectionCreator, IOpenSSLClientConnectionCreator) class HardCodedConnection: def clientConnectionForTLS(self, tlsProtocol): return fakeConnection serverConnectionForTLS = clientConnectionForTLS contextFactory = HardCodedConnection() else: if server: contextFactory = ServerTLSContext(method=serverMethod) else: contextFactory = ClientTLSContext() clock = Clock() wrapperFactory = TLSMemoryBIOFactory( contextFactory, not server, clientFactory, clock ) sslProtocol = wrapperFactory.buildProtocol(None) if transport is None: transport = StringTransport() sslProtocol.makeConnection(transport) return clientProtocol, sslProtocol class TLSMemoryBIOFactoryTests(TestCase): """ Ensure TLSMemoryBIOFactory logging acts correctly. """ def test_quiet(self): """ L{TLSMemoryBIOFactory.doStart} and L{TLSMemoryBIOFactory.doStop} do not log any messages. """ contextFactory = ServerTLSContext() logs = [] logger = logs.append log.addObserver(logger) self.addCleanup(log.removeObserver, logger) wrappedFactory = ServerFactory() # Disable logging on the wrapped factory: wrappedFactory.doStart = lambda: None wrappedFactory.doStop = lambda: None factory = TLSMemoryBIOFactory(contextFactory, False, wrappedFactory) factory.doStart() factory.doStop() self.assertEqual(logs, []) def test_logPrefix(self): """ L{TLSMemoryBIOFactory.logPrefix} amends the wrapped factory's log prefix with a short string (C{"TLS"}) indicating the wrapping, rather than its full class name. """ contextFactory = ServerTLSContext() factory = TLSMemoryBIOFactory(contextFactory, False, ServerFactory()) self.assertEqual("ServerFactory (TLS)", factory.logPrefix()) def test_logPrefixFallback(self): """ If the wrapped factory does not provide L{ILoggingContext}, L{TLSMemoryBIOFactory.logPrefix} uses the wrapped factory's class name. """ class NoFactory: pass contextFactory = ServerTLSContext() factory = TLSMemoryBIOFactory(contextFactory, False, NoFactory()) self.assertEqual("NoFactory (TLS)", factory.logPrefix()) def handshakingClientAndServer( clientGreetingData=None, clientAbortAfterHandshake=False ): """ Construct a client and server L{TLSMemoryBIOProtocol} connected by an IO pump. @param greetingData: The data which should be written in L{connectionMade}. @type greetingData: L{bytes} @return: 3-tuple of client, server, L{twisted.test.iosim.IOPump} """ authCert, serverCert = certificatesForAuthorityAndServer() clock = Clock() @implementer(IHandshakeListener) class Client(AccumulatingProtocol): handshook = False peerAfterHandshake = None def connectionMade(self): super().connectionMade() if clientGreetingData is not None: self.transport.write(clientGreetingData) def handshakeCompleted(self): self.handshook = True self.peerAfterHandshake = self.transport.getPeerCertificate() if clientAbortAfterHandshake: self.transport.abortConnection() def connectionLost(self, reason): pass @implementer(IHandshakeListener) class Server(AccumulatingProtocol): handshaked = False def handshakeCompleted(self): self.handshaked = True def connectionLost(self, reason): pass clientF = TLSMemoryBIOFactory( optionsForClientTLS("example.com", trustRoot=authCert), isClient=True, wrappedFactory=ClientFactory.forProtocol(lambda: Client(999999)), clock=clock, ) serverF = TLSMemoryBIOFactory( serverCert.options(), isClient=False, wrappedFactory=ServerFactory.forProtocol(lambda: Server(999999)), clock=clock, ) client, server, pump = connectedServerAndClient( lambda: serverF.buildProtocol(None), lambda: clientF.buildProtocol(None), greet=False, clock=clock, ) return client, server, pump class DeterministicTLSMemoryBIOTests(SynchronousTestCase): """ Test for the implementation of L{ISSLTransport} which runs over another transport. @note: Prefer to add test cases to this suite, in this style, using L{connectedServerAndClient}, rather than returning L{Deferred}s. """ def test_handshakeNotification(self): """ The completion of the TLS handshake calls C{handshakeCompleted} on L{Protocol} objects that provide L{IHandshakeListener}. At the time C{handshakeCompleted} is invoked, the transport's peer certificate will have been initialized. """ client, server, pump = handshakingClientAndServer() self.assertEqual(client.wrappedProtocol.handshook, False) self.assertEqual(server.wrappedProtocol.handshaked, False) pump.flush() self.assertEqual(client.wrappedProtocol.handshook, True) self.assertEqual(server.wrappedProtocol.handshaked, True) self.assertIsNot(client.wrappedProtocol.peerAfterHandshake, None) def test_handshakeStopWriting(self): """ If some data is written to the transport in C{connectionMade}, but C{handshakeDone} doesn't like something it sees about the handshake, it can use C{abortConnection} to ensure that the application never receives that data. """ client, server, pump = handshakingClientAndServer(b"untrustworthy", True) wrappedServerProtocol = server.wrappedProtocol pump.flush() self.assertEqual(wrappedServerProtocol.received, []) def test_smalWriteBuffering(self): """ If a small amount data is written to the TLS transport, it is only delivered if time passes, indicating small-write buffering is in effect. """ client, server, pump = handshakingClientAndServer() wrappedServerProtocol = server.wrappedProtocol pump.flush() self.assertEqual(wrappedServerProtocol.received, []) client.write(b"hel") client.write(b"lo") self.assertEqual(wrappedServerProtocol.received, []) pump.flush(advanceClock=False) self.assertEqual(wrappedServerProtocol.received, []) pump.flush(advanceClock=True) self.assertEqual(b"".join(wrappedServerProtocol.received), b"hello") class TLSMemoryBIOTests(TestCase): """ Tests for the implementation of L{ISSLTransport} which runs over another L{ITransport}. """ def test_interfaces(self): """ L{TLSMemoryBIOProtocol} instances provide L{ISSLTransport} and L{ISystemHandle}. """ proto = TLSMemoryBIOProtocol(None, None) self.assertTrue(ISSLTransport.providedBy(proto)) self.assertTrue(ISystemHandle.providedBy(proto)) def test_wrappedProtocolInterfaces(self): """ L{TLSMemoryBIOProtocol} instances provide the interfaces provided by the transport they wrap. """ class ITransport(Interface): pass class MyTransport: def write(self, data): pass clientFactory = ClientFactory() contextFactory = ClientTLSContext() wrapperFactory = TLSMemoryBIOFactory(contextFactory, True, clientFactory) transport = MyTransport() directlyProvides(transport, ITransport) tlsProtocol = TLSMemoryBIOProtocol(wrapperFactory, Protocol()) tlsProtocol.makeConnection(transport) self.assertTrue(ITransport.providedBy(tlsProtocol)) def test_getHandle(self): """ L{TLSMemoryBIOProtocol.getHandle} returns the L{OpenSSL.SSL.Connection} instance it uses to actually implement TLS. This may seem odd. In fact, it is. The L{OpenSSL.SSL.Connection} is not actually the "system handle" here, nor even an object the reactor knows about directly. However, L{twisted.internet.ssl.Certificate}'s C{peerFromTransport} and C{hostFromTransport} methods depend on being able to get an L{OpenSSL.SSL.Connection} object in order to work properly. Implementing L{ISystemHandle.getHandle} like this is the easiest way for those APIs to be made to work. If they are changed, then it may make sense to get rid of this implementation of L{ISystemHandle} and return the underlying socket instead. """ factory = ClientFactory() contextFactory = ClientTLSContext() wrapperFactory = TLSMemoryBIOFactory(contextFactory, True, factory) proto = TLSMemoryBIOProtocol(wrapperFactory, Protocol()) transport = StringTransport() proto.makeConnection(transport) self.assertIsInstance(proto.getHandle(), Connection) def test_makeConnection(self): """ When L{TLSMemoryBIOProtocol} is connected to a transport, it connects the protocol it wraps to a transport. """ clientProtocol = Protocol() clientFactory = ClientFactory() clientFactory.protocol = lambda: clientProtocol contextFactory = ClientTLSContext() wrapperFactory = TLSMemoryBIOFactory(contextFactory, True, clientFactory) sslProtocol = wrapperFactory.buildProtocol(None) transport = StringTransport() sslProtocol.makeConnection(transport) self.assertIsNotNone(clientProtocol.transport) self.assertIsNot(clientProtocol.transport, transport) self.assertIs(clientProtocol.transport, sslProtocol) def handshakeProtocols(self): """ Start handshake between TLS client and server. """ clientFactory = ClientFactory() clientFactory.protocol = Protocol ( clientContextFactory, handshakeDeferred, ) = HandshakeCallbackContextFactory.factoryAndDeferred() wrapperFactory = TLSMemoryBIOFactory(clientContextFactory, True, clientFactory) sslClientProtocol = wrapperFactory.buildProtocol(None) serverFactory = ServerFactory() serverFactory.protocol = Protocol serverContextFactory = ServerTLSContext() wrapperFactory = TLSMemoryBIOFactory(serverContextFactory, False, serverFactory) sslServerProtocol = wrapperFactory.buildProtocol(None) connectionDeferred = loopbackAsync(sslServerProtocol, sslClientProtocol) return ( sslClientProtocol, sslServerProtocol, handshakeDeferred, connectionDeferred, ) def test_handshake(self): """ The TLS handshake is performed when L{TLSMemoryBIOProtocol} is connected to a transport. """ tlsClient, tlsServer, handshakeDeferred, _ = self.handshakeProtocols() # Only wait for the handshake to complete. Anything after that isn't # important here. return handshakeDeferred def test_handshakeFailure(self): """ L{TLSMemoryBIOProtocol} reports errors in the handshake process to the application-level protocol object using its C{connectionLost} method and disconnects the underlying transport. """ clientConnectionLost = Deferred() clientFactory = ClientFactory() clientFactory.protocol = lambda: ConnectionLostNotifyingProtocol( clientConnectionLost ) clientContextFactory = HandshakeCallbackContextFactory() wrapperFactory = TLSMemoryBIOFactory(clientContextFactory, True, clientFactory) sslClientProtocol = wrapperFactory.buildProtocol(None) serverConnectionLost = Deferred() serverFactory = ServerFactory() serverFactory.protocol = lambda: ConnectionLostNotifyingProtocol( serverConnectionLost ) # This context factory rejects any clients which do not present a # certificate. certificateData = FilePath(certPath).getContent() certificate = PrivateCertificate.loadPEM(certificateData) serverContextFactory = certificate.options(certificate) wrapperFactory = TLSMemoryBIOFactory(serverContextFactory, False, serverFactory) sslServerProtocol = wrapperFactory.buildProtocol(None) connectionDeferred = loopbackAsync(sslServerProtocol, sslClientProtocol) def cbConnectionLost(protocol): # The connection should close on its own in response to the error # induced by the client not supplying the required certificate. # After that, check to make sure the protocol's connectionLost was # called with the right thing. protocol.lostConnectionReason.trap(Error) clientConnectionLost.addCallback(cbConnectionLost) serverConnectionLost.addCallback(cbConnectionLost) # Additionally, the underlying transport should have been told to # go away. return gatherResults( [clientConnectionLost, serverConnectionLost, connectionDeferred] ) def test_getPeerCertificate(self): """ L{TLSMemoryBIOProtocol.getPeerCertificate} returns the L{OpenSSL.crypto.X509} instance representing the peer's certificate. """ # Set up a client and server so there's a certificate to grab. clientFactory = ClientFactory() clientFactory.protocol = Protocol ( clientContextFactory, handshakeDeferred, ) = HandshakeCallbackContextFactory.factoryAndDeferred() wrapperFactory = TLSMemoryBIOFactory(clientContextFactory, True, clientFactory) sslClientProtocol = wrapperFactory.buildProtocol(None) serverFactory = ServerFactory() serverFactory.protocol = Protocol serverContextFactory = ServerTLSContext() wrapperFactory = TLSMemoryBIOFactory(serverContextFactory, False, serverFactory) sslServerProtocol = wrapperFactory.buildProtocol(None) loopbackAsync(sslServerProtocol, sslClientProtocol) # Wait for the handshake def cbHandshook(ignored): # Grab the server's certificate and check it out cert = sslClientProtocol.getPeerCertificate() self.assertIsInstance(cert, crypto.X509) self.assertEqual( cert.digest("sha256"), # openssl x509 -noout -sha256 -fingerprint # -in src/twisted/test/server.pem b"D6:F2:2C:74:3B:E2:5E:F9:CA:DA:47:08:14:78:20:75:78:95:9E:52" b":BD:D2:7C:77:DD:D4:EE:DE:33:BF:34:40", ) handshakeDeferred.addCallback(cbHandshook) return handshakeDeferred def test_writeAfterHandshake(self): """ Bytes written to L{TLSMemoryBIOProtocol} before the handshake is complete are received by the protocol on the other side of the connection once the handshake succeeds. """ data = b"some bytes" clientProtocol = Protocol() clientFactory = ClientFactory() clientFactory.protocol = lambda: clientProtocol ( clientContextFactory, handshakeDeferred, ) = HandshakeCallbackContextFactory.factoryAndDeferred() wrapperFactory = TLSMemoryBIOFactory(clientContextFactory, True, clientFactory) sslClientProtocol = wrapperFactory.buildProtocol(None) serverProtocol = AccumulatingProtocol(len(data)) serverFactory = ServerFactory() serverFactory.protocol = lambda: serverProtocol serverContextFactory = ServerTLSContext() wrapperFactory = TLSMemoryBIOFactory(serverContextFactory, False, serverFactory) sslServerProtocol = wrapperFactory.buildProtocol(None) connectionDeferred = loopbackAsync(sslServerProtocol, sslClientProtocol) # Wait for the handshake to finish before writing anything. def cbHandshook(ignored): clientProtocol.transport.write(data) # The server will drop the connection once it gets the bytes. return connectionDeferred handshakeDeferred.addCallback(cbHandshook) # Once the connection is lost, make sure the server received the # expected bytes. def cbDisconnected(ignored): self.assertEqual(b"".join(serverProtocol.received), data) handshakeDeferred.addCallback(cbDisconnected) return handshakeDeferred def writeBeforeHandshakeTest(self, sendingProtocol, data): """ Run test where client sends data before handshake, given the sending protocol and expected bytes. """ clientFactory = ClientFactory() clientFactory.protocol = sendingProtocol ( clientContextFactory, handshakeDeferred, ) = HandshakeCallbackContextFactory.factoryAndDeferred() wrapperFactory = TLSMemoryBIOFactory(clientContextFactory, True, clientFactory) sslClientProtocol = wrapperFactory.buildProtocol(None) serverProtocol = AccumulatingProtocol(len(data)) serverFactory = ServerFactory() serverFactory.protocol = lambda: serverProtocol serverContextFactory = ServerTLSContext() wrapperFactory = TLSMemoryBIOFactory(serverContextFactory, False, serverFactory) sslServerProtocol = wrapperFactory.buildProtocol(None) connectionDeferred = loopbackAsync(sslServerProtocol, sslClientProtocol) # Wait for the connection to end, then make sure the server received # the bytes sent by the client. def cbConnectionDone(ignored): self.assertEqual(b"".join(serverProtocol.received), data) connectionDeferred.addCallback(cbConnectionDone) return connectionDeferred def test_writeBeforeHandshake(self): """ Bytes written to L{TLSMemoryBIOProtocol} before the handshake is complete are received by the protocol on the other side of the connection once the handshake succeeds. """ data = b"some bytes" class SimpleSendingProtocol(Protocol): def connectionMade(self): self.transport.write(data) return self.writeBeforeHandshakeTest(SimpleSendingProtocol, data) def test_writeSequence(self): """ Bytes written to L{TLSMemoryBIOProtocol} with C{writeSequence} are received by the protocol on the other side of the connection. """ data = b"some bytes" class SimpleSendingProtocol(Protocol): def connectionMade(self): self.transport.writeSequence(list(iterbytes(data))) return self.writeBeforeHandshakeTest(SimpleSendingProtocol, data) def test_writeAfterLoseConnection(self): """ Bytes written to L{TLSMemoryBIOProtocol} after C{loseConnection} is called are not transmitted (unless there is a registered producer, which will be tested elsewhere). """ data = b"some bytes" class SimpleSendingProtocol(Protocol): def connectionMade(self): self.transport.write(data) self.transport.loseConnection() self.transport.write(b"hello") self.transport.writeSequence([b"world"]) return self.writeBeforeHandshakeTest(SimpleSendingProtocol, data) def test_writeUnicodeRaisesTypeError(self): """ Writing C{unicode} to L{TLSMemoryBIOProtocol} throws a C{TypeError}. """ notBytes = "hello" result = [] class SimpleSendingProtocol(Protocol): def connectionMade(self): try: self.transport.write(notBytes) self.transport.write(b"bytes") self.transport.loseConnection() except TypeError: result.append(True) self.transport.abortConnection() def flush_logged_errors(): self.assertEqual(len(self.flushLoggedErrors(ConnectionLost, TypeError)), 2) d = self.writeBeforeHandshakeTest(SimpleSendingProtocol, b"bytes") d.addBoth(lambda ign: self.assertEqual(result, [True])) d.addBoth(lambda ign: deferLater(reactor, 0, flush_logged_errors)) return d def test_multipleWrites(self): """ If multiple separate TLS messages are received in a single chunk from the underlying transport, all of the application bytes from each message are delivered to the application-level protocol. """ data = [b"a", b"b", b"c", b"d", b"e", b"f", b"g", b"h", b"i"] class SimpleSendingProtocol(Protocol): def connectionMade(self): for b in data: self.transport.write(b) clientFactory = ClientFactory() clientFactory.protocol = SimpleSendingProtocol clientContextFactory = HandshakeCallbackContextFactory() wrapperFactory = TLSMemoryBIOFactory(clientContextFactory, True, clientFactory) sslClientProtocol = wrapperFactory.buildProtocol(None) serverProtocol = AccumulatingProtocol(sum(map(len, data))) serverFactory = ServerFactory() serverFactory.protocol = lambda: serverProtocol serverContextFactory = ServerTLSContext() wrapperFactory = TLSMemoryBIOFactory(serverContextFactory, False, serverFactory) sslServerProtocol = wrapperFactory.buildProtocol(None) connectionDeferred = loopbackAsync( sslServerProtocol, sslClientProtocol, collapsingPumpPolicy ) # Wait for the connection to end, then make sure the server received # the bytes sent by the client. def cbConnectionDone(ignored): self.assertEqual(b"".join(serverProtocol.received), b"".join(data)) connectionDeferred.addCallback(cbConnectionDone) return connectionDeferred def hugeWrite(self, method=TLS_METHOD): """ If a very long string is passed to L{TLSMemoryBIOProtocol.write}, any trailing part of it which cannot be send immediately is buffered and sent later. """ data = b"some bytes" factor = 2**20 class SimpleSendingProtocol(Protocol): def connectionMade(self): self.transport.write(data * factor) clientFactory = ClientFactory() clientFactory.protocol = SimpleSendingProtocol clientContextFactory = HandshakeCallbackContextFactory(method=method) wrapperFactory = TLSMemoryBIOFactory(clientContextFactory, True, clientFactory) sslClientProtocol = wrapperFactory.buildProtocol(None) serverProtocol = AccumulatingProtocol(len(data) * factor) serverFactory = ServerFactory() serverFactory.protocol = lambda: serverProtocol serverContextFactory = ServerTLSContext(method=method) wrapperFactory = TLSMemoryBIOFactory(serverContextFactory, False, serverFactory) sslServerProtocol = wrapperFactory.buildProtocol(None) connectionDeferred = loopbackAsync(sslServerProtocol, sslClientProtocol) # Wait for the connection to end, then make sure the server received # the bytes sent by the client. def cbConnectionDone(ignored): self.assertEqual(b"".join(serverProtocol.received), data * factor) connectionDeferred.addCallback(cbConnectionDone) return connectionDeferred def test_hugeWrite(self): return self.hugeWrite() def test_hugeWrite_TLSv1_2(self): return self.hugeWrite(method=TLSv1_2_METHOD) def test_disorderlyShutdown(self): """ If a L{TLSMemoryBIOProtocol} loses its connection unexpectedly, this is reported to the application. """ clientConnectionLost = Deferred() clientFactory = ClientFactory() clientFactory.protocol = lambda: ConnectionLostNotifyingProtocol( clientConnectionLost ) clientContextFactory = HandshakeCallbackContextFactory() wrapperFactory = TLSMemoryBIOFactory(clientContextFactory, True, clientFactory) sslClientProtocol = wrapperFactory.buildProtocol(None) # Client speaks first, so the server can be dumb. serverProtocol = Protocol() loopbackAsync(serverProtocol, sslClientProtocol) # Now destroy the connection. serverProtocol.transport.loseConnection() # And when the connection completely dies, check the reason. def cbDisconnected(clientProtocol): clientProtocol.lostConnectionReason.trap(Error, ConnectionLost) clientConnectionLost.addCallback(cbDisconnected) return clientConnectionLost def test_loseConnectionAfterHandshake(self): """ L{TLSMemoryBIOProtocol.loseConnection} sends a TLS close alert and shuts down the underlying connection cleanly on both sides, after transmitting all buffered data. """ class NotifyingProtocol(ConnectionLostNotifyingProtocol): def __init__(self, onConnectionLost): ConnectionLostNotifyingProtocol.__init__(self, onConnectionLost) self.data = [] def dataReceived(self, data): self.data.append(data) clientConnectionLost = Deferred() clientFactory = ClientFactory() clientProtocol = NotifyingProtocol(clientConnectionLost) clientFactory.protocol = lambda: clientProtocol ( clientContextFactory, handshakeDeferred, ) = HandshakeCallbackContextFactory.factoryAndDeferred() wrapperFactory = TLSMemoryBIOFactory(clientContextFactory, True, clientFactory) sslClientProtocol = wrapperFactory.buildProtocol(None) serverConnectionLost = Deferred() serverProtocol = NotifyingProtocol(serverConnectionLost) serverFactory = ServerFactory() serverFactory.protocol = lambda: serverProtocol serverContextFactory = ServerTLSContext() wrapperFactory = TLSMemoryBIOFactory(serverContextFactory, False, serverFactory) sslServerProtocol = wrapperFactory.buildProtocol(None) loopbackAsync(sslServerProtocol, sslClientProtocol) chunkOfBytes = b"123456890" * 100000 # Wait for the handshake before dropping the connection. def cbHandshake(ignored): # Write more than a single bio_read, to ensure client will still # have some data it needs to write when it receives the TLS close # alert, and that simply doing a single bio_read won't be # sufficient. Thus we will verify that any amount of buffered data # will be written out before the connection is closed, rather than # just small amounts that can be returned in a single bio_read: clientProtocol.transport.write(chunkOfBytes) serverProtocol.transport.write(b"x") serverProtocol.transport.loseConnection() # Now wait for the client and server to notice. return gatherResults([clientConnectionLost, serverConnectionLost]) handshakeDeferred.addCallback(cbHandshake) # Wait for the connection to end, then make sure the client and server # weren't notified of a handshake failure that would cause the test to # fail. def cbConnectionDone(result): (clientProtocol, serverProtocol) = result clientProtocol.lostConnectionReason.trap(ConnectionDone) serverProtocol.lostConnectionReason.trap(ConnectionDone) # The server should have received all bytes sent by the client: self.assertEqual(b"".join(serverProtocol.data), chunkOfBytes) # The server should have closed its underlying transport, in # addition to whatever it did to shut down the TLS layer. self.assertTrue(serverProtocol.transport.q.disconnect) # The client should also have closed its underlying transport once # it saw the server shut down the TLS layer, so as to avoid relying # on the server to close the underlying connection. self.assertTrue(clientProtocol.transport.q.disconnect) handshakeDeferred.addCallback(cbConnectionDone) return handshakeDeferred def test_connectionLostOnlyAfterUnderlyingCloses(self): """ The user protocol's connectionLost is only called when transport underlying TLS is disconnected. """ class LostProtocol(Protocol): disconnected = None def connectionLost(self, reason): self.disconnected = reason wrapperFactory = TLSMemoryBIOFactory(ClientTLSContext(), True, ClientFactory()) protocol = LostProtocol() tlsProtocol = TLSMemoryBIOProtocol(wrapperFactory, protocol) transport = StringTransport() tlsProtocol.makeConnection(transport) # Pretend TLS shutdown finished cleanly; the underlying transport # should be told to close, but the user protocol should not yet be # notified: tlsProtocol._tlsShutdownFinished(None) self.assertTrue(transport.disconnecting) self.assertIsNone(protocol.disconnected) # Now close the underlying connection; the user protocol should be # notified with the given reason (since TLS closed cleanly): tlsProtocol.connectionLost(Failure(ConnectionLost("ono"))) self.assertTrue(protocol.disconnected.check(ConnectionLost)) self.assertEqual(protocol.disconnected.value.args, ("ono",)) def test_loseConnectionTwice(self): """ If TLSMemoryBIOProtocol.loseConnection is called multiple times, all but the first call have no effect. """ ( tlsClient, tlsServer, handshakeDeferred, disconnectDeferred, ) = self.handshakeProtocols() self.successResultOf(handshakeDeferred) # Make sure loseConnection calls _shutdownTLS the first time (mostly # to make sure we've overriding it correctly): calls = [] def _shutdownTLS(shutdown=tlsClient._shutdownTLS): calls.append(1) return shutdown() tlsClient._shutdownTLS = _shutdownTLS tlsClient.write(b"x") tlsClient.loseConnection() self.assertTrue(tlsClient.disconnecting) self.assertEqual(calls, [1]) # Make sure _shutdownTLS isn't called a second time: tlsClient.loseConnection() self.assertEqual(calls, [1]) # We do successfully disconnect at some point: return disconnectDeferred def test_loseConnectionAfterConnectionLost(self): """ If TLSMemoryBIOProtocol.loseConnection is called after connectionLost, it does nothing. """ ( tlsClient, tlsServer, handshakeDeferred, disconnectDeferred, ) = self.handshakeProtocols() # Make sure connectionLost calls _shutdownTLS, but loseConnection # doesnt call it for the second time. calls = [] def _shutdownTLS(shutdown=tlsClient._shutdownTLS): calls.append(1) return shutdown() tlsServer._shutdownTLS = _shutdownTLS tlsServer.write(b"x") tlsClient.loseConnection() def disconnected(_): # At this point tlsServer.connectionLost is already called self.assertEqual(calls, [1]) # This call should do nothing tlsServer.loseConnection() self.assertEqual(calls, [1]) disconnectDeferred.addCallback(disconnected) return disconnectDeferred def test_unexpectedEOF(self): """ Unexpected disconnects get converted to ConnectionLost errors. """ ( tlsClient, tlsServer, handshakeDeferred, disconnectDeferred, ) = self.handshakeProtocols() serverProtocol = tlsServer.wrappedProtocol data = [] reason = [] serverProtocol.dataReceived = data.append serverProtocol.connectionLost = reason.append # Write data, then disconnect *underlying* transport, resulting in an # unexpected TLS disconnect: def handshakeDone(ign): tlsClient.write(b"hello") tlsClient.transport.loseConnection() handshakeDeferred.addCallback(handshakeDone) # Receiver should be disconnected, with ConnectionLost notification # (masking the Unexpected EOF SSL error): def disconnected(ign): self.assertTrue(reason[0].check(ConnectionLost), reason[0]) disconnectDeferred.addCallback(disconnected) return disconnectDeferred def test_errorWriting(self): """ Errors while writing cause the protocols to be disconnected. """ ( tlsClient, tlsServer, handshakeDeferred, disconnectDeferred, ) = self.handshakeProtocols() reason = [] tlsClient.wrappedProtocol.connectionLost = reason.append # Pretend TLS connection is unhappy sending: class Wrapper: def __init__(self, wrapped): self._wrapped = wrapped def __getattr__(self, attr): return getattr(self._wrapped, attr) def send(self, *args): raise Error([("SSL routines", "", "this message is probably useless")]) tlsClient._tlsConnection = Wrapper(tlsClient._tlsConnection) # Write some data: def handshakeDone(ign): tlsClient.write(b"hello") handshakeDeferred.addCallback(handshakeDone) # Failed writer should be disconnected with SSL error: def disconnected(ign): self.assertTrue(reason[0].check(Error), reason[0]) disconnectDeferred.addCallback(disconnected) return disconnectDeferred def test_noCircularReferences(self): """ TLSMemoryBIOProtocol doesn't leave circular references that keep it in memory after connection is closed. """ def nObjectsOfType(type): """ Return the number of instances of a given type in memory. @param type: Type whose instances to find. @return: The number of instances found. """ return sum(1 for x in gc.get_objects() if isinstance(x, type)) self.addCleanup(gc.enable) gc.disable() class CloserProtocol(Protocol): def dataReceived(self, data): self.transport.loseConnection() class GreeterProtocol(Protocol): def connectionMade(self): self.transport.write(b"hello") origTLSProtos = nObjectsOfType(TLSMemoryBIOProtocol) origServerProtos = nObjectsOfType(CloserProtocol) authCert, serverCert = certificatesForAuthorityAndServer() serverFactory = TLSMemoryBIOFactory( serverCert.options(), False, Factory.forProtocol(CloserProtocol) ) clientFactory = TLSMemoryBIOFactory( optionsForClientTLS("example.com", trustRoot=authCert), True, Factory.forProtocol(GreeterProtocol), ) loopbackAsync( TLSMemoryBIOProtocol(serverFactory, CloserProtocol()), TLSMemoryBIOProtocol(clientFactory, GreeterProtocol()), ) newTLSProtos = nObjectsOfType(TLSMemoryBIOProtocol) newServerProtos = nObjectsOfType(CloserProtocol) self.assertEqual(newTLSProtos, origTLSProtos) self.assertEqual(newServerProtos, origServerProtos) class TLSProducerTests(TestCase): """ The TLS transport must support the IConsumer interface. """ def drain(self, transport, allowEmpty=False): """ Drain the bytes currently pending write from a L{StringTransport}, then clear it, since those bytes have been consumed. @param transport: The L{StringTransport} to get the bytes from. @type transport: L{StringTransport} @param allowEmpty: Allow the test to pass even if the transport has no outgoing bytes in it. @type allowEmpty: L{bool} @return: the outgoing bytes from the given transport @rtype: L{bytes} """ value = transport.value() transport.clear() self.assertEqual(bool(allowEmpty or value), True) return value def setupStreamingProducer( self, transport=None, fakeConnection=None, server=False, serverMethod=None ): """ Create a new client-side protocol that is connected to a remote TLS server. @param serverMethod: The TLS method accepted by the server-side. Set to to C{None} to use the default method used by your OpenSSL library. @return: A tuple with high level client protocol, the low-level client-side TLS protocol, and a producer that is used to send data to the client. """ class HistoryStringTransport(StringTransport): def __init__(self): StringTransport.__init__(self) self.producerHistory = [] def pauseProducing(self): self.producerHistory.append("pause") StringTransport.pauseProducing(self) def resumeProducing(self): self.producerHistory.append("resume") StringTransport.resumeProducing(self) def stopProducing(self): self.producerHistory.append("stop") StringTransport.stopProducing(self) applicationProtocol, tlsProtocol = buildTLSProtocol( transport=transport, fakeConnection=fakeConnection, server=server, serverMethod=serverMethod, ) producer = HistoryStringTransport() applicationProtocol.transport.registerProducer(producer, True) self.assertTrue(tlsProtocol.transport.streaming) return applicationProtocol, tlsProtocol, producer def flushTwoTLSProtocols(self, tlsProtocol, serverTLSProtocol): """ Transfer bytes back and forth between two TLS protocols. """ # We want to make sure all bytes are passed back and forth; JP # estimated that 3 rounds should be enough: for i in range(3): clientData = self.drain(tlsProtocol.transport, True) if clientData: serverTLSProtocol.dataReceived(clientData) serverData = self.drain(serverTLSProtocol.transport, True) if serverData: tlsProtocol.dataReceived(serverData) if not serverData and not clientData: break self.assertEqual(tlsProtocol.transport.value(), b"") self.assertEqual(serverTLSProtocol.transport.value(), b"") def test_streamingProducerPausedInNormalMode(self): """ When the TLS transport is not blocked on reads, it correctly calls pauseProducing on the registered producer. """ _, tlsProtocol, producer = self.setupStreamingProducer() # The TLS protocol's transport pretends to be full, pausing its # producer: tlsProtocol.transport.producer.pauseProducing() self.assertEqual(producer.producerState, "paused") self.assertEqual(producer.producerHistory, ["pause"]) self.assertTrue(tlsProtocol._producer._producerPaused) def test_streamingProducerResumedInNormalMode(self): """ When the TLS transport is not blocked on reads, it correctly calls resumeProducing on the registered producer. """ _, tlsProtocol, producer = self.setupStreamingProducer() tlsProtocol.transport.producer.pauseProducing() self.assertEqual(producer.producerHistory, ["pause"]) # The TLS protocol's transport pretends to have written everything # out, so it resumes its producer: tlsProtocol.transport.producer.resumeProducing() self.assertEqual(producer.producerState, "producing") self.assertEqual(producer.producerHistory, ["pause", "resume"]) self.assertFalse(tlsProtocol._producer._producerPaused) def test_streamingProducerPausedInWriteBlockedOnReadMode(self): """ When the TLS transport is blocked on reads, it correctly calls pauseProducing on the registered producer. """ clientProtocol, tlsProtocol, producer = self.setupStreamingProducer() # Write to TLS transport. Because we do this before the initial TLS # handshake is finished, writing bytes triggers a WantReadError, # indicating that until bytes are read for the handshake, more bytes # cannot be written. Thus writing bytes before the handshake should # cause the producer to be paused: clientProtocol.transport.write(b"hello") tlsProtocol.factory._clock.advance(0) self.assertEqual(producer.producerState, "paused") self.assertEqual(producer.producerHistory, ["pause"]) self.assertTrue(tlsProtocol._producer._producerPaused) def test_streamingProducerResumedInWriteBlockedOnReadMode(self): """ When the TLS transport is blocked on reads, it correctly calls resumeProducing on the registered producer. """ clientProtocol, tlsProtocol, producer = self.setupStreamingProducer() # Write to TLS transport, triggering WantReadError; this should cause # the producer to be paused. We use a large chunk of data to make sure # large writes don't trigger multiple pauses: clientProtocol.transport.write(b"hello world" * 320000) self.assertEqual(producer.producerHistory, ["pause"]) # Now deliver bytes that will fix the WantRead condition; this should # unpause the producer: serverProtocol, serverTLSProtocol = buildTLSProtocol(server=True) self.flushTwoTLSProtocols(tlsProtocol, serverTLSProtocol) self.assertEqual(producer.producerHistory, ["pause", "resume"]) self.assertFalse(tlsProtocol._producer._producerPaused) # Make sure we haven't disconnected for some reason: self.assertFalse(tlsProtocol.transport.disconnecting) self.assertEqual(producer.producerState, "producing") def test_streamingProducerTwice(self): """ Registering a streaming producer twice throws an exception. """ clientProtocol, tlsProtocol, producer = self.setupStreamingProducer() originalProducer = tlsProtocol._producer producer2 = object() self.assertRaises( RuntimeError, clientProtocol.transport.registerProducer, producer2, True ) self.assertIs(tlsProtocol._producer, originalProducer) def test_streamingProducerUnregister(self): """ Unregistering a streaming producer removes it, reverting to initial state. """ clientProtocol, tlsProtocol, producer = self.setupStreamingProducer() clientProtocol.transport.unregisterProducer() self.assertIsNone(tlsProtocol._producer) self.assertIsNone(tlsProtocol.transport.producer) def test_streamingProducerUnregisterTwice(self): """ Unregistering a streaming producer when no producer is registered is safe. """ clientProtocol, tlsProtocol, producer = self.setupStreamingProducer() clientProtocol.transport.unregisterProducer() clientProtocol.transport.unregisterProducer() self.assertIsNone(tlsProtocol._producer) self.assertIsNone(tlsProtocol.transport.producer) def loseConnectionWithProducer(self, writeBlockedOnRead): """ Common code for tests involving writes by producer after loseConnection is called. """ clientProtocol, tlsProtocol, producer = self.setupStreamingProducer() serverProtocol, serverTLSProtocol = buildTLSProtocol(server=True) if not writeBlockedOnRead: # Do the initial handshake before write: self.flushTwoTLSProtocols(tlsProtocol, serverTLSProtocol) else: # In this case the write below will trigger write-blocked-on-read # condition... pass # Now write, then lose connection: clientProtocol.transport.write(b"x ") clientProtocol.transport.loseConnection() self.flushTwoTLSProtocols(tlsProtocol, serverTLSProtocol) # Underlying transport should not have loseConnection called yet, nor # should producer be stopped: self.assertFalse(tlsProtocol.transport.disconnecting) self.assertFalse("stop" in producer.producerHistory) # Writes from client to server should continue to go through, since we # haven't unregistered producer yet: clientProtocol.transport.write(b"hello") clientProtocol.transport.writeSequence([b" ", b"world"]) tlsProtocol.factory._clock.advance(0) # Unregister producer; this should trigger TLS shutdown: clientProtocol.transport.unregisterProducer() self.assertNotEqual(tlsProtocol.transport.value(), b"") self.assertFalse(tlsProtocol.transport.disconnecting) # Additional writes should not go through: clientProtocol.transport.write(b"won't") clientProtocol.transport.writeSequence([b"won't!"]) tlsProtocol.factory._clock.advance(0) # Finish TLS close handshake: self.flushTwoTLSProtocols(tlsProtocol, serverTLSProtocol) self.assertTrue(tlsProtocol.transport.disconnecting) # Bytes made it through, as long as they were written before producer # was unregistered: self.assertEqual(b"".join(serverProtocol.received), b"x hello world") def test_streamingProducerLoseConnectionWithProducer(self): """ loseConnection() waits for the producer to unregister itself, then does a clean TLS close alert, then closes the underlying connection. """ return self.loseConnectionWithProducer(False) def test_streamingProducerLoseConnectionWithProducerWBOR(self): """ Even when writes are blocked on reading, loseConnection() waits for the producer to unregister itself, then does a clean TLS close alert, then closes the underlying connection. """ return self.loseConnectionWithProducer(True) def test_streamingProducerBothTransportsDecideToPause(self): """ pauseProducing() events can come from both the TLS transport layer and the underlying transport. In this case, both decide to pause, underlying first. """ class PausingStringTransport(StringTransport): _didPause = False def write(self, data): if not self._didPause and self.producer is not None: self._didPause = True self.producer.pauseProducing() StringTransport.write(self, data) class TLSConnection: def __init__(self): self.l = [] def send(self, data): # on first write, don't send all bytes: if not self.l: data = data[:-1] # pause on second write: if len(self.l) == 1: self.l.append("paused") raise WantReadError() # otherwise just take in data: self.l.append(data) return len(data) def set_connect_state(self): pass def do_handshake(self): pass def bio_write(self, data): pass def bio_read(self, size): return b"X" def recv(self, size): raise WantReadError() transport = PausingStringTransport() clientProtocol, tlsProtocol, producer = self.setupStreamingProducer( transport, fakeConnection=TLSConnection() ) self.assertEqual(producer.producerState, "producing") # Shove in fake TLSConnection that will raise WantReadError the second # time send() is called. This will allow us to have bytes written to # to the PausingStringTransport, so it will pause the producer. Then, # WantReadError will be thrown, triggering the TLS transport's # producer code path. clientProtocol.transport.write(b"hello") tlsProtocol.factory._clock.advance(0) self.assertEqual(producer.producerState, "paused") self.assertEqual(producer.producerHistory, ["pause"]) # Now, underlying transport resumes, and then we deliver some data to # TLS transport so that it will resume: tlsProtocol.transport.producer.resumeProducing() self.assertEqual(producer.producerState, "producing") self.assertEqual(producer.producerHistory, ["pause", "resume"]) tlsProtocol.dataReceived(b"hello") self.assertEqual(producer.producerState, "producing") self.assertEqual(producer.producerHistory, ["pause", "resume"]) def test_streamingProducerStopProducing(self): """ If the underlying transport tells its producer to stopProducing(), this is passed on to the high-level producer. """ _, tlsProtocol, producer = self.setupStreamingProducer() tlsProtocol.transport.producer.stopProducing() self.assertEqual(producer.producerState, "stopped") def test_nonStreamingProducer(self): """ Non-streaming producers get wrapped as streaming producers. """ clientProtocol, tlsProtocol = buildTLSProtocol() producer = NonStreamingProducer(clientProtocol.transport) # Register non-streaming producer: clientProtocol.transport.registerProducer(producer, False) streamingProducer = tlsProtocol.transport.producer._producer # Verify it was wrapped into streaming producer: self.assertIsInstance(streamingProducer, _PullToPush) self.assertEqual(streamingProducer._producer, producer) self.assertEqual(streamingProducer._consumer, clientProtocol.transport) self.assertTrue(tlsProtocol.transport.streaming) # Verify the streaming producer was started, and ran until the end: def done(ignore): # Our own producer is done: self.assertIsNone(producer.consumer) # The producer has been unregistered: self.assertIsNone(tlsProtocol.transport.producer) # The streaming producer wrapper knows it's done: self.assertTrue(streamingProducer._finished) producer.result.addCallback(done) serverProtocol, serverTLSProtocol = buildTLSProtocol(server=True) self.flushTwoTLSProtocols(tlsProtocol, serverTLSProtocol) return producer.result def test_interface(self): """ L{_ProducerMembrane} implements L{IPushProducer}. """ producer = StringTransport() membrane = _ProducerMembrane(producer) self.assertTrue(verifyObject(IPushProducer, membrane)) def registerProducerAfterConnectionLost(self, streaming): """ If a producer is registered after the transport has disconnected, the producer is not used, and its stopProducing method is called. """ clientProtocol, tlsProtocol = buildTLSProtocol() clientProtocol.connectionLost = lambda reason: reason.trap( Error, ConnectionLost ) class Producer: stopped = False def resumeProducing(self): return 1 / 0 # this should never be called def stopProducing(self): self.stopped = True # Disconnect the transport: tlsProtocol.connectionLost(Failure(ConnectionDone())) # Register the producer; startProducing should not be called, but # stopProducing will: producer = Producer() tlsProtocol.registerProducer(producer, False) self.assertIsNone(tlsProtocol.transport.producer) self.assertTrue(producer.stopped) def test_streamingProducerAfterConnectionLost(self): """ If a streaming producer is registered after the transport has disconnected, the producer is not used, and its stopProducing method is called. """ self.registerProducerAfterConnectionLost(True) def test_nonStreamingProducerAfterConnectionLost(self): """ If a non-streaming producer is registered after the transport has disconnected, the producer is not used, and its stopProducing method is called. """ self.registerProducerAfterConnectionLost(False) class NonStreamingProducerTests(TestCase): """ Non-streaming producers can be adapted into being streaming producers. """ def streamUntilEnd(self, consumer): """ Verify the consumer writes out all its data, but is not called after that. """ nsProducer = NonStreamingProducer(consumer) streamingProducer = _PullToPush(nsProducer, consumer) consumer.registerProducer(streamingProducer, True) # The producer will call unregisterProducer(), and we need to hook # that up so the streaming wrapper is notified; the # TLSMemoryBIOProtocol will have to do this itself, which is tested # elsewhere: def unregister(orig=consumer.unregisterProducer): orig() streamingProducer.stopStreaming() consumer.unregisterProducer = unregister done = nsProducer.result def doneStreaming(_): # All data was streamed, and the producer unregistered itself: self.assertEqual(consumer.value(), b"0123456789") self.assertIsNone(consumer.producer) # And the streaming wrapper stopped: self.assertTrue(streamingProducer._finished) done.addCallback(doneStreaming) # Now, start streaming: streamingProducer.startStreaming() return done def test_writeUntilDone(self): """ When converted to a streaming producer, the non-streaming producer writes out all its data, but is not called after that. """ consumer = StringTransport() return self.streamUntilEnd(consumer) def test_pause(self): """ When the streaming producer is paused, the underlying producer stops getting resumeProducing calls. """ class PausingStringTransport(StringTransport): writes = 0 def __init__(self): StringTransport.__init__(self) self.paused = Deferred() def write(self, data): self.writes += 1 StringTransport.write(self, data) if self.writes == 3: self.producer.pauseProducing() d = self.paused del self.paused d.callback(None) consumer = PausingStringTransport() nsProducer = NonStreamingProducer(consumer) streamingProducer = _PullToPush(nsProducer, consumer) consumer.registerProducer(streamingProducer, True) # Make sure the consumer does not continue: def shouldNotBeCalled(ignore): self.fail("BUG: The producer should not finish!") nsProducer.result.addCallback(shouldNotBeCalled) done = consumer.paused def paused(ignore): # The CooperatorTask driving the producer was paused: self.assertEqual(streamingProducer._coopTask._pauseCount, 1) done.addCallback(paused) # Now, start streaming: streamingProducer.startStreaming() return done def test_resume(self): """ When the streaming producer is paused and then resumed, the underlying producer starts getting resumeProducing calls again after the resume. The test will never finish (or rather, time out) if the resume producing call is not working. """ class PausingStringTransport(StringTransport): writes = 0 def write(self, data): self.writes += 1 StringTransport.write(self, data) if self.writes == 3: self.producer.pauseProducing() self.producer.resumeProducing() consumer = PausingStringTransport() return self.streamUntilEnd(consumer) def test_stopProducing(self): """ When the streaming producer is stopped by the consumer, the underlying producer is stopped, and streaming is stopped. """ class StoppingStringTransport(StringTransport): writes = 0 def write(self, data): self.writes += 1 StringTransport.write(self, data) if self.writes == 3: self.producer.stopProducing() consumer = StoppingStringTransport() nsProducer = NonStreamingProducer(consumer) streamingProducer = _PullToPush(nsProducer, consumer) consumer.registerProducer(streamingProducer, True) done = nsProducer.result def doneStreaming(_): # Not all data was streamed, and the producer was stopped: self.assertEqual(consumer.value(), b"012") self.assertTrue(nsProducer.stopped) # And the streaming wrapper stopped: self.assertTrue(streamingProducer._finished) done.addCallback(doneStreaming) # Now, start streaming: streamingProducer.startStreaming() return done def resumeProducingRaises(self, consumer, expectedExceptions): """ Common implementation for tests where the underlying producer throws an exception when its resumeProducing is called. """ class ThrowingProducer(NonStreamingProducer): def resumeProducing(self): if self.counter == 2: return 1 / 0 else: NonStreamingProducer.resumeProducing(self) nsProducer = ThrowingProducer(consumer) streamingProducer = _PullToPush(nsProducer, consumer) consumer.registerProducer(streamingProducer, True) # Register log observer: loggedMsgs = [] log.addObserver(loggedMsgs.append) self.addCleanup(log.removeObserver, loggedMsgs.append) # Make consumer unregister do what TLSMemoryBIOProtocol would do: def unregister(orig=consumer.unregisterProducer): orig() streamingProducer.stopStreaming() consumer.unregisterProducer = unregister # Start streaming: streamingProducer.startStreaming() done = streamingProducer._coopTask.whenDone() done.addErrback(lambda reason: reason.trap(TaskStopped)) def stopped(ign): self.assertEqual(consumer.value(), b"01") # Any errors from resumeProducing were logged: errors = self.flushLoggedErrors() self.assertEqual(len(errors), len(expectedExceptions)) for f, (expected, msg), logMsg in zip( errors, expectedExceptions, loggedMsgs ): self.assertTrue(f.check(expected)) self.assertIn(msg, logMsg["why"]) # And the streaming wrapper stopped: self.assertTrue(streamingProducer._finished) done.addCallback(stopped) return done def test_resumeProducingRaises(self): """ If the underlying producer raises an exception when resumeProducing is called, the streaming wrapper should log the error, unregister from the consumer and stop streaming. """ consumer = StringTransport() done = self.resumeProducingRaises( consumer, [(ZeroDivisionError, "failed, producing will be stopped")] ) def cleanShutdown(ignore): # Producer was unregistered from consumer: self.assertIsNone(consumer.producer) done.addCallback(cleanShutdown) return done def test_resumeProducingRaiseAndUnregisterProducerRaises(self): """ If the underlying producer raises an exception when resumeProducing is called, the streaming wrapper should log the error, unregister from the consumer and stop streaming even if the unregisterProducer call also raise. """ consumer = StringTransport() def raiser(): raise RuntimeError() consumer.unregisterProducer = raiser return self.resumeProducingRaises( consumer, [ (ZeroDivisionError, "failed, producing will be stopped"), (RuntimeError, "failed to unregister producer"), ], ) def test_stopStreamingTwice(self): """ stopStreaming() can be called more than once without blowing up. This is useful for error-handling paths. """ consumer = StringTransport() nsProducer = NonStreamingProducer(consumer) streamingProducer = _PullToPush(nsProducer, consumer) streamingProducer.startStreaming() streamingProducer.stopStreaming() streamingProducer.stopStreaming() self.assertTrue(streamingProducer._finished) def test_interface(self): """ L{_PullToPush} implements L{IPushProducer}. """ consumer = StringTransport() nsProducer = NonStreamingProducer(consumer) streamingProducer = _PullToPush(nsProducer, consumer) self.assertTrue(verifyObject(IPushProducer, streamingProducer)) @implementer(IProtocolNegotiationFactory) class ClientNegotiationFactory(ClientFactory): """ A L{ClientFactory} that has a set of acceptable protocols for NPN/ALPN negotiation. """ def __init__(self, acceptableProtocols): """ Create a L{ClientNegotiationFactory}. @param acceptableProtocols: The protocols the client will accept speaking after the TLS handshake is complete. @type acceptableProtocols: L{list} of L{bytes} """ self._acceptableProtocols = acceptableProtocols def acceptableProtocols(self): """ Returns a list of protocols that can be spoken by the connection factory in the form of ALPN tokens, as laid out in the IANA registry for ALPN tokens. @return: a list of ALPN tokens in order of preference. @rtype: L{list} of L{bytes} """ return self._acceptableProtocols @implementer(IProtocolNegotiationFactory) class ServerNegotiationFactory(ServerFactory): """ A L{ServerFactory} that has a set of acceptable protocols for NPN/ALPN negotiation. """ def __init__(self, acceptableProtocols): """ Create a L{ServerNegotiationFactory}. @param acceptableProtocols: The protocols the server will accept speaking after the TLS handshake is complete. @type acceptableProtocols: L{list} of L{bytes} """ self._acceptableProtocols = acceptableProtocols def acceptableProtocols(self): """ Returns a list of protocols that can be spoken by the connection factory in the form of ALPN tokens, as laid out in the IANA registry for ALPN tokens. @return: a list of ALPN tokens in order of preference. @rtype: L{list} of L{bytes} """ return self._acceptableProtocols class _AggregateSmallWritesTests(SynchronousTestCase): """Tests for ``_AggregateSmallWrites``.""" # Hypothesis will repeatedly generate different lists which will be a # combination of instances of ``bytes`` and ``None``, and pass that as the # ``writes`` parameter. The ``bytes`` should be passed to # L{_AggregateSmallWrites.write}, a ``None`` indicates that some time has # passed, which should cause the aggregator to write data out. @given( st.lists( st.one_of( st.none(), # We could use st.bytes(min_size=1, max_size=100_000), but if # we did we'd waste time exploring different byte contents, # which in this particular case don't matter. We just care # about lengths, so long as misordering or truncating is likely # to be noticed. st.integers(min_value=1, max_value=100_000).map( lambda length: (b"0123456789ABCDEFGHIJ" * ((length // 20) + 1))[ :length ] ), ), max_size=1_000, ) ) def test_writes_get_aggregated(self, writes: list[Union[bytes, None]]) -> None: """ A L{_AggregateSmallWrites} correctly aggregates data for the given sequence of writes (indicated by bytes) and increments in the clock (indicated by C{None}). If multiple writes happen in between reactor iterations, they should get written in a batch at the start of the next reactor iteration. """ # Whenever the aggregate is flushed, it will write the bytes to this # list: result: list[bytes] = [] clock = Clock() aggregate = _AggregateSmallWrites(result.append, clock) for value in writes: if value is None: clock.advance(0) else: aggregate.write(value) # Flush any remaining bytes: aggregate.flush() # Now, check the invariants: # 1. All bytes passed to aggregate.write() should have been written # out, in the correct order: self.assertEqual( b"".join(result), b"".join(value for value in writes if value is not None) ) # 2. All writes happened either when the max buffer size was reached, # or when the clock advanced: small_writes = writes[:] for chunk in result: combined_length = len(chunk) # Initial flushes have no side-effects: while small_writes and small_writes[0] is None: small_writes.pop(0) small_writes_length = 0 while small_writes: next_original_maybe_write = small_writes.pop(0) if next_original_maybe_write is None: self.assertEqual(combined_length, small_writes_length) break else: small_writes_length += len(next_original_maybe_write) if small_writes_length > aggregate.MAX_BUFFER_SIZE: self.assertEqual(combined_length, small_writes_length) break