%PDF- %PDF-
Direktori : /lib/python3/dist-packages/reportlab/pdfgen/ |
Current File : //lib/python3/dist-packages/reportlab/pdfgen/pathobject.py |
#Copyright ReportLab Europe Ltd. 2000-2017 #see license.txt for license details #history https://hg.reportlab.com/hg-public/reportlab/log/tip/src/reportlab/pdfgen/pathobject.py __version__='3.3.0' __doc__=""" PDFPathObject is an efficient way to draw paths on a Canvas. Do not instantiate directly, obtain one from the Canvas instead. Progress Reports: 8.83, 2000-01-13, gmcm: created from pdfgen.py """ from reportlab.pdfgen import pdfgeom from reportlab.lib.rl_accel import fp_str class PDFPathObject: """Represents a graphic path. There are certain 'modes' to PDF drawing, and making a separate object to expose Path operations ensures they are completed with no run-time overhead. Ask the Canvas for a PDFPath with getNewPathObject(); moveto/lineto/ curveto wherever you want; add whole shapes; and then add it back into the canvas with one of the relevant operators. Path objects are probably not long, so we pack onto one line the code argument allows a canvas to get the operations appended directly so avoiding the final getCode """ def __init__(self,code=None): self._code = (code,[])[code is None] self._code_append = self._init_code_append def _init_code_append(self,c): assert c.endswith(' m') or c.endswith(' re'), 'path must start with a moveto or rect' code_append = self._code.append code_append('n') code_append(c) self._code_append = code_append def getCode(self): "pack onto one line; used internally" return ' '.join(self._code) def moveTo(self, x, y): self._code_append('%s m' % fp_str(x,y)) def lineTo(self, x, y): self._code_append('%s l' % fp_str(x,y)) def curveTo(self, x1, y1, x2, y2, x3, y3): self._code_append('%s c' % fp_str(x1, y1, x2, y2, x3, y3)) def arc(self, x1,y1, x2,y2, startAng=0, extent=90): """Contributed to piddlePDF by Robert Kern, 28/7/99. Draw a partial ellipse inscribed within the rectangle x1,y1,x2,y2, starting at startAng degrees and covering extent degrees. Angles start with 0 to the right (+x) and increase counter-clockwise. These should have x1<x2 and y1<y2. The algorithm is an elliptical generalization of the formulae in Jim Fitzsimmon's TeX tutorial <URL: http://www.tinaja.com/bezarc1.pdf>.""" self._curves(pdfgeom.bezierArc(x1,y1, x2,y2, startAng, extent)) def arcTo(self, x1,y1, x2,y2, startAng=0, extent=90): """Like arc, but draws a line from the current point to the start if the start is not the current point.""" self._curves(pdfgeom.bezierArc(x1,y1, x2,y2, startAng, extent),'lineTo') def rect(self, x, y, width, height): """Adds a rectangle to the path""" self._code_append('%s re' % fp_str((x, y, width, height))) def ellipse(self, x, y, width, height): """adds an ellipse to the path""" self._curves(pdfgeom.bezierArc(x, y, x + width,y + height, 0, 360)) def _curves(self,curves,initial='moveTo'): getattr(self,initial)(*curves[0][:2]) for curve in curves: self.curveTo(*curve[2:]) def circle(self, x_cen, y_cen, r): """adds a circle to the path""" x1 = x_cen - r y1 = y_cen - r width = height = 2*r self.ellipse(x1, y1, width, height) def roundRect(self, x, y, width, height, radius): """Draws a rectangle with rounded corners. The corners are approximately quadrants of a circle, with the given radius.""" #use a precomputed set of factors for the bezier approximation #to a circle. There are six relevant points on the x axis and y axis. #sketch them and it should all make sense! m = 0.4472 #radius multiplier xhi = x,x+width xlo, xhi = min(xhi), max(xhi) yhi = y,y+height ylo, yhi = min(yhi), max(yhi) if isinstance(radius,(list,tuple)): r = [max(0,r) for r in radius] if len(r)<4: r += (4-len(r))*[0] self.moveTo(xlo + r[2], ylo) #start at bottom left self.lineTo(xhi - r[3], ylo) #bottom row if r[3]>0: t = m*r[3] self.curveTo(xhi - t, ylo, xhi, ylo + t, xhi, ylo + r[3]) #bottom right self.lineTo(xhi, yhi - r[1]) #right edge if r[1]>0: t = m*r[1] self.curveTo(xhi, yhi - t, xhi - t, yhi, xhi - r[1], yhi) #top right self.lineTo(xlo + r[0], yhi) #top row if r[0]>0: t = m*r[0] self.curveTo(xlo + t, yhi, xlo, yhi - t, xlo, yhi - r[0]) #top left self.lineTo(xlo, ylo + r[2]) #left edge if r[2]>0: t = m*r[2] self.curveTo(xlo, ylo + t, xlo + t, ylo, xlo + r[2], ylo) #bottom left # 4 radii top left top right bittom left bottom right else: t = m * radius self.moveTo(xlo + radius, ylo) self.lineTo(xhi - radius, ylo) #bottom row self.curveTo(xhi - t, ylo, xhi, ylo + t, xhi, ylo + radius) #bottom right self.lineTo(xhi, yhi - radius) #right edge self.curveTo(xhi, yhi - t, xhi - t, yhi, xhi - radius, yhi) #top right self.lineTo(xlo + radius, yhi) #top row self.curveTo(xlo + t, yhi, xlo, yhi - t, xlo, yhi - radius) #top left self.lineTo(xlo, ylo + radius) #left edge self.curveTo(xlo, ylo + t, xlo + t, ylo, xlo + radius, ylo) #bottom left self.close() def close(self): "draws a line back to where it started" self._code_append('h')