%PDF- %PDF-
Direktori : /lib/python3/dist-packages/reportlab/graphics/barcode/ |
Current File : //lib/python3/dist-packages/reportlab/graphics/barcode/ecc200datamatrix.py |
#this code contributed by Kyle Macfarlane see #https://bitbucket.org/rptlab/reportlab/issues/69/implementations-of-code-128-auto-and-data __all__= ('ECC200datamatrix',) FACTORS = { 5: (228, 48, 15, 111, 62), 7: (23, 68, 144, 134, 240, 92, 254), 10: (28, 24, 185, 166, 223, 248, 116, 255, 110, 61), 11: (175, 138, 205, 12, 194, 168, 39, 245, 60, 97, 120), 12: (41, 153, 158, 91, 61, 42, 142, 213, 97, 178, 100, 242), 14: (156, 97, 192, 252, 95, 9, 157, 119, 138, 45, 18, 186, 83, 185), 18: (83, 195, 100, 39, 188, 75, 66, 61, 241, 213, 109, 129, 94, 254, 225, 48, 90, 188), 20: (15, 195, 244, 9, 233, 71, 168, 2, 188, 160, 153, 145, 253, 79, 108, 82, 27, 174, 186, 172), 24: (52, 190, 88, 205, 109, 39, 176, 21, 155, 197, 251, 223, 155, 21, 5, 172, 254, 124, 12, 181, 184, 96, 50, 193), 28: (211, 231, 43, 97, 71, 96, 103, 174, 37, 151, 170, 53, 75, 34, 249, 121, 17, 138, 110, 213, 141, 136, 120, 151, 233, 168, 93, 255), 36: (245, 127, 242, 218, 130, 250, 162, 181, 102, 120, 84, 179, 220, 251, 80, 182, 229, 18, 2, 4, 68, 33, 101, 137, 95, 119, 115, 44, 175, 184, 59, 25, 225, 98, 81, 112), 42: (77, 193, 137, 31, 19, 38, 22, 153, 247, 105, 122, 2, 245, 133, 242, 8, 175, 95, 100, 9, 167, 105, 214, 111, 57, 121, 21, 1, 253, 57, 54, 101, 248, 202, 69, 50, 150, 177, 226, 5, 9, 5), 48: (245, 132, 172, 223, 96, 32, 117, 22, 238, 133, 238, 231, 205, 188, 237, 87, 191, 106, 16, 147, 118, 23, 37, 90, 170, 205, 131, 88, 120, 100, 66, 138, 186, 240, 82, 44, 176, 87, 187, 147, 160, 175, 69, 213, 92, 253, 225, 19), 56: (175, 9, 223, 238, 12, 17, 220, 208, 100, 29, 175, 170, 230, 192, 215, 235, 150, 159, 36, 223, 38, 200, 132, 54, 228, 146, 218, 234, 117, 203, 29, 232, 144, 238, 22, 150, 201, 117, 62, 207, 164, 13, 137, 245, 127, 67, 247, 28, 155, 43, 203, 107, 233, 53, 143, 46), 62: (242, 93, 169, 50, 144, 210, 39, 118, 202, 188, 201, 189, 143, 108, 196, 37, 185, 112, 134, 230, 245, 63, 197, 190, 250, 106, 185, 221, 175, 64, 114, 71, 161, 44, 147, 6, 27, 218, 51, 63, 87, 10, 40, 130, 188, 17, 163, 31, 176, 170, 4, 107, 232, 7, 94, 166, 224, 124, 86, 47, 11, 204), 68: (220, 228, 173, 89, 251, 149, 159, 56, 89, 33, 147, 244, 154, 36, 73, 127, 213, 136, 248, 180, 234, 197, 158, 177, 68, 122, 93, 213, 15, 160, 227, 236, 66, 139, 153, 185, 202, 167, 179, 25, 220, 232, 96, 210, 231, 136, 223, 239, 181, 241, 59, 52, 172, 25, 49, 232, 211, 189, 64, 54, 108, 153, 132, 63, 96, 103, 82, 186) } LOGVAL = ( -255, 255, 1, 240, 2, 225, 241, 53, 3, 38, 226, 133, 242, 43, 54, 210, 4, 195, 39, 114, 227, 106, 134, 28, 243, 140, 44, 23, 55, 118, 211, 234, 5, 219, 196, 96, 40, 222, 115, 103, 228, 78, 107, 125, 135, 8, 29, 162, 244, 186, 141, 180, 45, 99, 24, 49, 56, 13, 119, 153, 212, 199, 235, 91, 6, 76, 220, 217, 197, 11, 97, 184, 41, 36, 223, 253, 116, 138, 104, 193, 229, 86, 79, 171, 108, 165, 126, 145, 136, 34, 9, 74, 30, 32, 163, 84, 245, 173, 187, 204, 142, 81, 181, 190, 46, 88, 100, 159, 25, 231, 50, 207, 57, 147, 14, 67, 120, 128, 154, 248, 213, 167, 200, 63, 236, 110, 92, 176, 7, 161, 77, 124, 221, 102, 218, 95, 198, 90, 12, 152, 98, 48, 185, 179, 42, 209, 37, 132, 224, 52, 254, 239, 117, 233, 139, 22, 105, 27, 194, 113, 230, 206, 87, 158, 80, 189, 172, 203, 109, 175, 166, 62, 127, 247, 146, 66, 137, 192, 35, 252, 10, 183, 75, 216, 31, 83, 33, 73, 164, 144, 85, 170, 246, 65, 174, 61, 188, 202, 205, 157, 143, 169, 82, 72, 182, 215, 191, 251, 47, 178, 89, 151, 101, 94, 160, 123, 26, 112, 232, 21, 51, 238, 208, 131, 58, 69, 148, 18, 15, 16, 68, 17, 121, 149, 129, 19, 155, 59, 249, 70, 214, 250, 168, 71, 201, 156, 64, 60, 237, 130, 111, 20, 93, 122, 177, 150 ) ALOGVAL = ( 1, 2, 4, 8, 16, 32, 64, 128, 45, 90, 180, 69, 138, 57, 114, 228, 229, 231, 227, 235, 251, 219, 155, 27, 54, 108, 216, 157, 23, 46, 92, 184, 93, 186, 89, 178, 73, 146, 9, 18, 36, 72, 144, 13, 26, 52, 104, 208, 141, 55, 110, 220, 149, 7, 14, 28, 56, 112, 224, 237, 247, 195, 171, 123, 246, 193, 175, 115, 230, 225, 239, 243, 203, 187, 91, 182, 65, 130, 41, 82, 164, 101, 202, 185, 95, 190, 81, 162, 105, 210, 137, 63, 126, 252, 213, 135, 35, 70, 140, 53, 106, 212, 133, 39, 78, 156, 21, 42, 84, 168, 125, 250, 217, 159, 19, 38, 76, 152, 29, 58, 116, 232, 253, 215, 131, 43, 86, 172, 117, 234, 249, 223, 147, 11, 22, 44, 88, 176, 77, 154, 25, 50, 100, 200, 189, 87, 174, 113, 226, 233, 255, 211, 139, 59, 118, 236, 245, 199, 163, 107, 214, 129, 47, 94, 188, 85, 170, 121, 242, 201, 191, 83, 166, 97, 194, 169, 127, 254, 209, 143, 51, 102, 204, 181, 71, 142, 49, 98, 196, 165, 103, 206, 177, 79, 158, 17, 34, 68, 136, 61, 122, 244, 197, 167, 99, 198, 161, 111, 222, 145, 15, 30, 60, 120, 240, 205, 183, 67, 134, 33, 66, 132, 37, 74, 148, 5, 10, 20, 40, 80, 160, 109, 218, 153, 31, 62, 124, 248, 221, 151, 3, 6, 12, 24, 48, 96, 192, 173, 119, 238, 241, 207, 179, 75, 150, 1 ) from reportlab.graphics.barcode.common import Barcode class ECC200DataMatrix(Barcode): '''This code only supports a Type 12 (44x44) C40 encoded data matrix. This is the size and encoding that Royal Mail wants on all mail from October 1st 2015. see https://bitbucket.org/rptlab/reportlab/issues/69/implementations-of-code-128-auto-and-data ''' barWidth = 4 def __init__(self, *args, **kwargs): Barcode.__init__(self,*args, **kwargs) # These values below are hardcoded for a Type 12 44x44 data matrix self.row_modules = 44 self.col_modules = 44 self.row_regions = 2 self.col_regions = 2 self.cw_data = 144 self.cw_ecc = 56 self.row_usable_modules = self.row_modules - self.row_regions * 2 self.col_usable_modules = self.col_modules - self.col_regions * 2 def validate(self): self.valid = 1 for c in self.value: if ord(c) > 255: self.valid = 0 break else: self.validated = self.value def _encode_c40_char(self, char): o = ord(char) encoded = [] if o == 32 or (o >= 48 and o <= 57) or (o >= 65 and o <= 90): # Stay in set 0 if o == 32: encoded.append(o - 29) elif o >= 48 and o <= 57: encoded.append(o - 44) else: encoded.append(o - 51) elif o >= 0 and o <= 31: encoded.append(0) # Shift to set 1 encoded.append(o) elif (o >= 33 and o <= 64) or (o >= 91 and o <= 95): encoded.append(1) # Shift to set 2 if o >= 33 and o <= 64: encoded.append(o - 33) else: encoded.append(o - 69) elif o >= 96 and o <= 127: encoded.append(2) # Shift to set 3 encoded.append(o - 96) elif o >= 128 and o <= 255: # Extended ASCII encoded.append(1) # Shift to set 2 encoded.append(30) # Upper shift / hibit encoded += self._encode_c40_char(chr(o - 128)) else: raise Exception('Cannot encode %s (%s)' % (char, o)) return encoded def _encode_c40(self, value): encoded = [] for c in value: encoded += self._encode_c40_char(c) while len(encoded) % 3: encoded.append(0) # Fake padding that makes chunking in the next step easier codewords = [] codewords.append(230) # Switch to C40 encoding for i in range(0, len(encoded), 3): chunk = encoded[i:i+3] total = chunk[0] * 1600 + chunk[1] * 40 + chunk[2] + 1 codewords.append(total // 256) codewords.append(total % 256) codewords.append(254) # End of data if len(codewords) > self.cw_data: raise Exception('Too much data to fit into a data matrix of this size') if len(codewords) < self.cw_data: # Real padding codewords.append(129) # Start padding while len(codewords) < self.cw_data: r = ((149 * (len(codewords) + 1)) % 253) + 1 codewords.append((129 + r) % 254) return codewords def _gfsum(self, int1, int2): return int1 ^ int2 def _gfproduct(self, int1, int2): if int1 == 0 or int2 == 0: return 0 else: return ALOGVAL[(LOGVAL[int1] + LOGVAL[int2]) % 255] def _get_reed_solomon_code(self, data, num_code_words): """ This method is basically verbatim from "huBarcode" which is BSD licensed https://github.com/hudora/huBarcode/blob/master/hubarcode/datamatrix/reedsolomon.py """ cw_factors = FACTORS[num_code_words] code_words = [0] * num_code_words for data_word in data: tmp = self._gfsum(data_word, code_words[-1]) for j in range(num_code_words - 1, -1, -1): code_words[j] = self._gfproduct(tmp, cw_factors[j]) if j > 0: code_words[j] = self._gfsum(code_words[j - 1], code_words[j]) code_words.reverse() return code_words def _get_next_bits(self, data): value = data.pop(0) bits = [] for i in range(0, 8): bits.append(value >> i & 1) bits.reverse() return bits def _place_bit(self, row, col, bit): if row < 0: row += self.row_usable_modules col += (4 - ((self.row_usable_modules + 4) % 8)) if col < 0: col += self.col_usable_modules row += (4 - ((self.col_usable_modules + 4) % 8)) self._matrix[row][col] = bit def _place_bit_corner_1(self, data): bits = self._get_next_bits(data) self._place_bit(self.row_usable_modules - 1, 0, bits[0]) self._place_bit(self.row_usable_modules - 1, 1, bits[1]) self._place_bit(self.row_usable_modules - 1, 2, bits[2]) self._place_bit(0, self.col_usable_modules - 2, bits[3]) self._place_bit(0, self.col_usable_modules - 1, bits[4]) self._place_bit(1, self.col_usable_modules - 1, bits[5]) self._place_bit(2, self.col_usable_modules - 1, bits[6]) self._place_bit(3, self.col_usable_modules - 1, bits[7]) def _place_bit_corner_2(self, data): bits = self._get_next_bits(data) self._place_bit(self.row_usable_modules - 3, 0, bits[0]) self._place_bit(self.row_usable_modules - 2, 0, bits[1]) self._place_bit(self.row_usable_modules - 1, 0, bits[2]) self._place_bit(0, self.col_usable_modules - 4, bits[3]) self._place_bit(0, self.col_usable_modules - 3, bits[4]) self._place_bit(0, self.col_usable_modules - 2, bits[5]) self._place_bit(0, self.col_usable_modules - 1, bits[6]) self._place_bit(1, self.col_usable_modules - 1, bits[7]) def _place_bit_corner_3(self, data): bits = self._get_next_bits(data) self._place_bit(self.row_usable_modules - 3, 0, bits[0]) self._place_bit(self.row_usable_modules - 2, 0, bits[1]) self._place_bit(self.row_usable_modules - 1, 0, bits[2]) self._place_bit(0, self.col_usable_modules - 2, bits[3]) self._place_bit(0, self.col_usable_modules - 1, bits[4]) self._place_bit(1, self.col_usable_modules - 1, bits[5]) self._place_bit(2, self.col_usable_modules - 1, bits[6]) self._place_bit(3, self.col_usable_modules - 1, bits[7]) def _place_bit_corner_4(self, data): bits = self._get_next_bits(data) self._place_bit(self.row_usable_modules - 1, 0, bits[0]) self._place_bit(self.row_usable_modules - 1, self.col_usable_modules - 1, bits[1]) self._place_bit(0, self.col_usable_modules - 3, bits[2]) self._place_bit(0, self.col_usable_modules - 2, bits[3]) self._place_bit(0, self.col_usable_modules - 1, bits[4]) self._place_bit(1, self.col_usable_modules - 3, bits[5]) self._place_bit(1, self.col_usable_modules - 2, bits[6]) self._place_bit(1, self.col_usable_modules - 1, bits[7]) def _place_bit_standard(self, data, row, col): bits = self._get_next_bits(data) self._place_bit(row - 2, col - 2, bits[0]) self._place_bit(row - 2, col - 1, bits[1]) self._place_bit(row - 1, col - 2, bits[2]) self._place_bit(row - 1, col - 1, bits[3]) self._place_bit(row - 1, col, bits[4]) self._place_bit(row, col - 2, bits[5]) self._place_bit(row, col - 1, bits[6]) self._place_bit(row, col, bits[7]) def _create_matrix(self, data): """ This method is heavily influenced by "huBarcode" which is BSD licensed https://github.com/hudora/huBarcode/blob/master/hubarcode/datamatrix/placement.py """ rows = self.row_usable_modules cols = self.col_usable_modules self._matrix = self._create_empty_matrix(rows, cols) row = 4 col = 0 while True: if row == rows and col == 0: self._place_bit_corner_1(data) elif row == (rows - 2) and col == 0 and (cols % 4): self._place_bit_corner_2(data) elif row == (rows - 2) and col == 0 and (cols % 8 == 4): self._place_bit_corner_3(data) elif row == (rows + 4) and col == 2 and (cols % 8 == 0): self._place_bit_corner_4(data) while True: if row < rows and col >= 0 and self._matrix[row][col] is None: self._place_bit_standard(data, row, col) row -= 2 col += 2 if row < 0 or col >= cols: break row += 1 col += 3 while True: if row >= 0 and col < cols and self._matrix[row][col] is None: self._place_bit_standard(data, row, col) row += 2 col -= 2 if row >= rows or col < 0: break row += 3 col += 1 if row >= rows and col >= cols: break for row in self._matrix: for i in range(0, cols): if row[i] is None: row[i] = 0 return self._matrix def _create_data_regions(self, matrix): regions = [] col_offset = 0 row_offset = 0 rows = int(self.row_usable_modules / self.row_regions) cols = int(self.col_usable_modules / self.col_regions) while col_offset < self.row_regions: while row_offset < self.col_regions: r_offset = col_offset * rows c_offset = row_offset * cols region = matrix[r_offset:rows+r_offset] for i in range(0, len(region)): region[i] = region[i][c_offset:cols+c_offset] regions.append(region) row_offset += 1 row_offset = 0 col_offset += 1 return regions def _create_empty_matrix(self, row, col): matrix = [] for i in range(0, row): matrix.append([None] * col) return matrix def _wrap_data_regions_with_finders(self, regions): wrapped = [] for region in regions: matrix = self._create_empty_matrix( int(self.col_modules / self.col_regions), int(self.row_modules / self.row_regions) ) for i, rows in enumerate(region): for j, data in enumerate(rows): matrix[i+1][j+1] = data for i, row in enumerate(matrix): if i == 0: for j, col in enumerate(row): row[j] = (j + 1) % 2 elif i + 1 == len(matrix): for j, col in enumerate(row): row[j] = 1 else: row[0] = 1 row[-1] = i % 2 wrapped.append(matrix) return wrapped def _merge_data_regions(self, regions): merged = [] for i in range(0, len(regions), self.row_regions): chunk = regions[i:i+self.row_regions] j = 0 while j < len(chunk[0]): merged_row = [] for row in chunk: merged_row += row[j] merged.append(merged_row) j += 1 return merged def encode(self): if hasattr(self, 'encoded'): return self.encoded encoded = self._encode_c40(self.validated) encoded += self._get_reed_solomon_code(encoded, self.cw_ecc) matrix = self._create_matrix(encoded) data_regions = self._create_data_regions(matrix) wrapped = self._wrap_data_regions_with_finders(data_regions) self.encoded = self._merge_data_regions(wrapped) self.encoded.reverse() # Helpful since PDFs start at bottom left corner return self.encoded def computeSize(self, *args): self._height = self.row_modules * self.barWidth self._width = self.col_modules * self.barWidth def draw(self): for y, row in enumerate(self.encoded): for x, data in enumerate(row): if data: self.rect( self.x + x * self.barWidth, self.y + y * self.barWidth, self.barWidth, self.barWidth )