%PDF- %PDF-
Direktori : /lib/python3/dist-packages/bcc/ |
Current File : //lib/python3/dist-packages/bcc/table.py |
# Copyright 2015 PLUMgrid # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function try: from collections.abc import MutableMapping except ImportError: from collections import MutableMapping from time import strftime import ctypes as ct from functools import reduce import os import errno import re import sys from .libbcc import lib, _RAW_CB_TYPE, _LOST_CB_TYPE, _RINGBUF_CB_TYPE, bcc_perf_buffer_opts from .utils import get_online_cpus from .utils import get_possible_cpus BPF_MAP_TYPE_HASH = 1 BPF_MAP_TYPE_ARRAY = 2 BPF_MAP_TYPE_PROG_ARRAY = 3 BPF_MAP_TYPE_PERF_EVENT_ARRAY = 4 BPF_MAP_TYPE_PERCPU_HASH = 5 BPF_MAP_TYPE_PERCPU_ARRAY = 6 BPF_MAP_TYPE_STACK_TRACE = 7 BPF_MAP_TYPE_CGROUP_ARRAY = 8 BPF_MAP_TYPE_LRU_HASH = 9 BPF_MAP_TYPE_LRU_PERCPU_HASH = 10 BPF_MAP_TYPE_LPM_TRIE = 11 BPF_MAP_TYPE_ARRAY_OF_MAPS = 12 BPF_MAP_TYPE_HASH_OF_MAPS = 13 BPF_MAP_TYPE_DEVMAP = 14 BPF_MAP_TYPE_SOCKMAP = 15 BPF_MAP_TYPE_CPUMAP = 16 BPF_MAP_TYPE_XSKMAP = 17 BPF_MAP_TYPE_SOCKHASH = 18 BPF_MAP_TYPE_CGROUP_STORAGE = 19 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY = 20 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE = 21 BPF_MAP_TYPE_QUEUE = 22 BPF_MAP_TYPE_STACK = 23 BPF_MAP_TYPE_SK_STORAGE = 24 BPF_MAP_TYPE_DEVMAP_HASH = 25 BPF_MAP_TYPE_STRUCT_OPS = 26 BPF_MAP_TYPE_RINGBUF = 27 BPF_MAP_TYPE_INODE_STORAGE = 28 BPF_MAP_TYPE_TASK_STORAGE = 29 map_type_name = { BPF_MAP_TYPE_HASH: "HASH", BPF_MAP_TYPE_ARRAY: "ARRAY", BPF_MAP_TYPE_PROG_ARRAY: "PROG_ARRAY", BPF_MAP_TYPE_PERF_EVENT_ARRAY: "PERF_EVENT_ARRAY", BPF_MAP_TYPE_PERCPU_HASH: "PERCPU_HASH", BPF_MAP_TYPE_PERCPU_ARRAY: "PERCPU_ARRAY", BPF_MAP_TYPE_STACK_TRACE: "STACK_TRACE", BPF_MAP_TYPE_CGROUP_ARRAY: "CGROUP_ARRAY", BPF_MAP_TYPE_LRU_HASH: "LRU_HASH", BPF_MAP_TYPE_LRU_PERCPU_HASH: "LRU_PERCPU_HASH", BPF_MAP_TYPE_LPM_TRIE: "LPM_TRIE", BPF_MAP_TYPE_ARRAY_OF_MAPS: "ARRAY_OF_MAPS", BPF_MAP_TYPE_HASH_OF_MAPS: "HASH_OF_MAPS", BPF_MAP_TYPE_DEVMAP: "DEVMAP", BPF_MAP_TYPE_SOCKMAP: "SOCKMAP", BPF_MAP_TYPE_CPUMAP: "CPUMAP", BPF_MAP_TYPE_XSKMAP: "XSKMAP", BPF_MAP_TYPE_SOCKHASH: "SOCKHASH", BPF_MAP_TYPE_CGROUP_STORAGE: "CGROUP_STORAGE", BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: "REUSEPORT_SOCKARRAY", BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: "PERCPU_CGROUP_STORAGE", BPF_MAP_TYPE_QUEUE: "QUEUE", BPF_MAP_TYPE_STACK: "STACK", BPF_MAP_TYPE_SK_STORAGE: "SK_STORAGE", BPF_MAP_TYPE_DEVMAP_HASH: "DEVMAP_HASH", BPF_MAP_TYPE_STRUCT_OPS: "STRUCT_OPS", BPF_MAP_TYPE_RINGBUF: "RINGBUF", BPF_MAP_TYPE_INODE_STORAGE: "INODE_STORAGE", BPF_MAP_TYPE_TASK_STORAGE: "TASK_STORAGE", } stars_max = 40 log2_index_max = 65 linear_index_max = 1025 # helper functions, consider moving these to a utils module def _stars(val, val_max, width): i = 0 text = "" while (1): if (i > (width * val / val_max) - 1) or (i > width - 1): break text += "*" i += 1 if val > val_max: text = text[:-1] + "+" return text def get_json_hist(vals, val_type, section_bucket=None): return _get_json_hist(vals, val_type, section_bucket=None) def _get_json_hist(vals, val_type, section_bucket=None): hist_list = [] max_nonzero_idx = 0 for i in range(len(vals)): if vals[i] != 0: max_nonzero_idx = i index = 1 prev = 0 for i in range(len(vals)): if i != 0 and i <= max_nonzero_idx: index = index * 2 list_obj = {} list_obj['interval-start'] = prev list_obj['interval-end'] = int(index) - 1 list_obj['count'] = int(vals[i]) hist_list.append(list_obj) prev = index histogram = {"ts": strftime("%Y-%m-%d %H:%M:%S"), "val_type": val_type, "data": hist_list} if section_bucket: histogram[section_bucket[0]] = section_bucket[1] return histogram def _print_log2_hist(vals, val_type, strip_leading_zero): global stars_max log2_dist_max = 64 idx_max = -1 val_max = 0 for i, v in enumerate(vals): if v > 0: idx_max = i if v > val_max: val_max = v if idx_max <= 32: header = " %-19s : count distribution" body = "%10d -> %-10d : %-8d |%-*s|" stars = stars_max else: header = " %-29s : count distribution" body = "%20d -> %-20d : %-8d |%-*s|" stars = int(stars_max / 2) if idx_max > 0: print(header % val_type) for i in range(1, idx_max + 1): low = (1 << i) >> 1 high = (1 << i) - 1 if (low == high): low -= 1 val = vals[i] if strip_leading_zero: if val: print(body % (low, high, val, stars, _stars(val, val_max, stars))) strip_leading_zero = False else: print(body % (low, high, val, stars, _stars(val, val_max, stars))) def _print_linear_hist(vals, val_type, strip_leading_zero): global stars_max log2_dist_max = 64 idx_max = -1 val_max = 0 for i, v in enumerate(vals): if v > 0: idx_max = i if v > val_max: val_max = v header = " %-13s : count distribution" body = " %-10d : %-8d |%-*s|" stars = stars_max if idx_max >= 0: print(header % val_type) for i in range(0, idx_max + 1): val = vals[i] if strip_leading_zero: if val: print(body % (i, val, stars, _stars(val, val_max, stars))) strip_leading_zero = False else: print(body % (i, val, stars, _stars(val, val_max, stars))) def get_table_type_name(ttype): try: return map_type_name[ttype] except KeyError: return "<unknown>" def _get_event_class(event_map): ct_mapping = { 'char' : ct.c_char, 's8' : ct.c_char, 'unsigned char' : ct.c_ubyte, 'u8' : ct.c_ubyte, 'u8 *' : ct.c_char_p, 'char *' : ct.c_char_p, 'short' : ct.c_short, 's16' : ct.c_short, 'unsigned short' : ct.c_ushort, 'u16' : ct.c_ushort, 'int' : ct.c_int, 's32' : ct.c_int, 'enum' : ct.c_int, 'unsigned int' : ct.c_uint, 'u32' : ct.c_uint, 'long' : ct.c_long, 'unsigned long' : ct.c_ulong, 'long long' : ct.c_longlong, 's64' : ct.c_longlong, 'unsigned long long': ct.c_ulonglong, 'u64' : ct.c_ulonglong, '__int128' : (ct.c_longlong * 2), 'unsigned __int128' : (ct.c_ulonglong * 2), 'void *' : ct.c_void_p, } # handle array types e.g. "int [16]", "char[16]" or "unsigned char[16]" array_type = re.compile(r"(\S+(?: \S+)*) ?\[([0-9]+)\]$") fields = [] num_fields = lib.bpf_perf_event_fields(event_map.bpf.module, event_map._name) i = 0 while i < num_fields: field = lib.bpf_perf_event_field(event_map.bpf.module, event_map._name, i).decode() m = re.match(r"(.*)#(.*)", field) field_name = m.group(1) field_type = m.group(2) if re.match(r"enum .*", field_type): field_type = "enum" m = array_type.match(field_type) try: if m: fields.append((field_name, ct_mapping[m.group(1)] * int(m.group(2)))) else: fields.append((field_name, ct_mapping[field_type])) except KeyError: # Using print+sys.exit instead of raising exceptions, # because exceptions are caught by the caller. print("Type: '%s' not recognized. Please define the data with ctypes manually." % field_type, file=sys.stderr) sys.exit(1) i += 1 return type('', (ct.Structure,), {'_fields_': fields}) def Table(bpf, map_id, map_fd, keytype, leaftype, name, **kwargs): """Table(bpf, map_id, map_fd, keytype, leaftype, **kwargs) Create a python object out of a reference to a bpf table handle""" ttype = lib.bpf_table_type_id(bpf.module, map_id) t = None if ttype == BPF_MAP_TYPE_HASH: t = HashTable(bpf, map_id, map_fd, keytype, leaftype) elif ttype == BPF_MAP_TYPE_ARRAY: t = Array(bpf, map_id, map_fd, keytype, leaftype) elif ttype == BPF_MAP_TYPE_PROG_ARRAY: t = ProgArray(bpf, map_id, map_fd, keytype, leaftype) elif ttype == BPF_MAP_TYPE_PERF_EVENT_ARRAY: t = PerfEventArray(bpf, map_id, map_fd, keytype, leaftype, name) elif ttype == BPF_MAP_TYPE_PERCPU_HASH: t = PerCpuHash(bpf, map_id, map_fd, keytype, leaftype, **kwargs) elif ttype == BPF_MAP_TYPE_PERCPU_ARRAY: t = PerCpuArray(bpf, map_id, map_fd, keytype, leaftype, **kwargs) elif ttype == BPF_MAP_TYPE_LPM_TRIE: t = LpmTrie(bpf, map_id, map_fd, keytype, leaftype) elif ttype == BPF_MAP_TYPE_STACK_TRACE: t = StackTrace(bpf, map_id, map_fd, keytype, leaftype) elif ttype == BPF_MAP_TYPE_LRU_HASH: t = LruHash(bpf, map_id, map_fd, keytype, leaftype) elif ttype == BPF_MAP_TYPE_LRU_PERCPU_HASH: t = LruPerCpuHash(bpf, map_id, map_fd, keytype, leaftype) elif ttype == BPF_MAP_TYPE_CGROUP_ARRAY: t = CgroupArray(bpf, map_id, map_fd, keytype, leaftype) elif ttype == BPF_MAP_TYPE_DEVMAP: t = DevMap(bpf, map_id, map_fd, keytype, leaftype) elif ttype == BPF_MAP_TYPE_CPUMAP: t = CpuMap(bpf, map_id, map_fd, keytype, leaftype) elif ttype == BPF_MAP_TYPE_XSKMAP: t = XskMap(bpf, map_id, map_fd, keytype, leaftype) elif ttype == BPF_MAP_TYPE_ARRAY_OF_MAPS: t = MapInMapArray(bpf, map_id, map_fd, keytype, leaftype) elif ttype == BPF_MAP_TYPE_HASH_OF_MAPS: t = MapInMapHash(bpf, map_id, map_fd, keytype, leaftype) elif ttype == BPF_MAP_TYPE_QUEUE or ttype == BPF_MAP_TYPE_STACK: t = QueueStack(bpf, map_id, map_fd, leaftype) elif ttype == BPF_MAP_TYPE_RINGBUF: t = RingBuf(bpf, map_id, map_fd, keytype, leaftype, name) if t == None: raise Exception("Unknown table type %d" % ttype) return t class TableBase(MutableMapping): def __init__(self, bpf, map_id, map_fd, keytype, leaftype, name=None): self.bpf = bpf self.map_id = map_id self.map_fd = map_fd self.Key = keytype self.Leaf = leaftype self.ttype = lib.bpf_table_type_id(self.bpf.module, self.map_id) self.flags = lib.bpf_table_flags_id(self.bpf.module, self.map_id) self._cbs = {} self._name = name self.max_entries = int(lib.bpf_table_max_entries_id(self.bpf.module, self.map_id)) def get_fd(self): return self.map_fd def key_sprintf(self, key): buf = ct.create_string_buffer(ct.sizeof(self.Key) * 8) res = lib.bpf_table_key_snprintf(self.bpf.module, self.map_id, buf, len(buf), ct.byref(key)) if res < 0: raise Exception("Could not printf key") return buf.value def leaf_sprintf(self, leaf): buf = ct.create_string_buffer(ct.sizeof(self.Leaf) * 8) res = lib.bpf_table_leaf_snprintf(self.bpf.module, self.map_id, buf, len(buf), ct.byref(leaf)) if res < 0: raise Exception("Could not printf leaf") return buf.value def key_scanf(self, key_str): key = self.Key() res = lib.bpf_table_key_sscanf(self.bpf.module, self.map_id, key_str, ct.byref(key)) if res < 0: raise Exception("Could not scanf key") return key def leaf_scanf(self, leaf_str): leaf = self.Leaf() res = lib.bpf_table_leaf_sscanf(self.bpf.module, self.map_id, leaf_str, ct.byref(leaf)) if res < 0: raise Exception("Could not scanf leaf") return leaf def __getitem__(self, key): leaf = self.Leaf() res = lib.bpf_lookup_elem(self.map_fd, ct.byref(key), ct.byref(leaf)) if res < 0: raise KeyError return leaf def __setitem__(self, key, leaf): res = lib.bpf_update_elem(self.map_fd, ct.byref(key), ct.byref(leaf), 0) if res < 0: errstr = os.strerror(ct.get_errno()) raise Exception("Could not update table: %s" % errstr) def __delitem__(self, key): res = lib.bpf_delete_elem(self.map_fd, ct.byref(key)) if res < 0: raise KeyError # override the MutableMapping's implementation of these since they # don't handle KeyError nicely def itervalues(self): for key in self: # a map entry may be deleted in between discovering the key and # fetching the value, suppress such errors try: yield self[key] except KeyError: pass def iteritems(self): for key in self: try: yield (key, self[key]) except KeyError: pass def items(self): return [item for item in self.iteritems()] def values(self): return [value for value in self.itervalues()] def clear(self): # default clear uses popitem, which can race with the bpf prog for k in self.keys(): self.__delitem__(k) def _alloc_keys_values(self, alloc_k=False, alloc_v=False, count=None): """Allocate keys and/or values arrays. Useful for in items_*_batch. Args: alloc_k (bool): True to allocate keys array, False otherwise. Default is False. alloc_v (bool): True to allocate values array, False otherwise. Default is False. count (int): number of elements in the array(s) to allocate. If count is None then it allocates the maximum number of elements i.e self.max_entries. Returns: tuple: (count, keys, values). Where count is ct.c_uint32, and keys and values an instance of ct.Array Raises: ValueError: If count is less than 1 or greater than self.max_entries. """ keys = values = None if not alloc_k and not alloc_v: return (ct.c_uint32(0), None, None) if not count: # means alloc maximum size count = self.max_entries elif count < 1 or count > self.max_entries: raise ValueError("Wrong count") if alloc_k: keys = (self.Key * count)() if alloc_v: values = (self.Leaf * count)() return (ct.c_uint32(count), keys, values) def _sanity_check_keys_values(self, keys=None, values=None): """Check if the given keys or values have the right type and size. Args: keys (ct.Array): keys array to check values (ct.Array): values array to check Returns: ct.c_uint32 : the size of the array(s) Raises: ValueError: If length of arrays is less than 1 or greater than self.max_entries, or when both arrays length are different. TypeError: If the keys and values are not an instance of ct.Array """ arr_len = 0 for elem in [keys, values]: if elem: if not isinstance(elem, ct.Array): raise TypeError arr_len = len(elem) if arr_len < 1 or arr_len > self.max_entries: raise ValueError("Array's length is wrong") if keys and values: # check both length are equal if len(keys) != len(values): raise ValueError("keys array length != values array length") return ct.c_uint32(arr_len) def items_lookup_batch(self): """Look up all the key-value pairs in the map. Args: None Yields: tuple: The tuple of (key,value) for every entries that have been looked up. Notes: lookup batch on a keys subset is not supported by the kernel. """ for k, v in self._items_lookup_and_optionally_delete_batch(delete=False): yield(k, v) return def items_delete_batch(self, ct_keys=None): """Delete the key-value pairs related to the keys given as parameters. Note that if no key are given, it is faster to call lib.bpf_lookup_and_delete_batch than create keys array and then call lib.bpf_delete_batch on these keys. Args: ct_keys (ct.Array): keys array to delete. If an array of keys is given then it deletes all the related keys-values. If keys is None (default) then it deletes all entries. Yields: tuple: The tuple of (key,value) for every entries that have been deleted. Raises: Exception: If bpf syscall return value indicates an error. """ if ct_keys is not None: ct_cnt = self._sanity_check_keys_values(keys=ct_keys) res = lib.bpf_delete_batch(self.map_fd, ct.byref(ct_keys), ct.byref(ct_cnt) ) if (res != 0): raise Exception("BPF_MAP_DELETE_BATCH has failed: %s" % os.strerror(ct.get_errno())) else: for _ in self.items_lookup_and_delete_batch(): return def items_update_batch(self, ct_keys, ct_values): """Update all the key-value pairs in the map provided. The arrays must be the same length, between 1 and the maximum number of entries. Args: ct_keys (ct.Array): keys array to update ct_values (ct.Array): values array to update Raises: Exception: If bpf syscall return value indicates an error. """ ct_cnt = self._sanity_check_keys_values(keys=ct_keys, values=ct_values) res = lib.bpf_update_batch(self.map_fd, ct.byref(ct_keys), ct.byref(ct_values), ct.byref(ct_cnt) ) if (res != 0): raise Exception("BPF_MAP_UPDATE_BATCH has failed: %s" % os.strerror(ct.get_errno())) def items_lookup_and_delete_batch(self): """Look up and delete all the key-value pairs in the map. Args: None Yields: tuple: The tuple of (key,value) for every entries that have been looked up and deleted. Notes: lookup and delete batch on a keys subset is not supported by the kernel. """ for k, v in self._items_lookup_and_optionally_delete_batch(delete=True): yield(k, v) return def _items_lookup_and_optionally_delete_batch(self, delete=True): """Look up and optionally delete all the key-value pairs in the map. Args: delete (bool) : look up and delete the key-value pairs when True, else just look up. Yields: tuple: The tuple of (key,value) for every entries that have been looked up and deleted. Raises: Exception: If bpf syscall return value indicates an error. Notes: lookup and delete batch on a keys subset is not supported by the kernel. """ if delete is True: bpf_batch = lib.bpf_lookup_and_delete_batch bpf_cmd = "BPF_MAP_LOOKUP_AND_DELETE_BATCH" else: bpf_batch = lib.bpf_lookup_batch bpf_cmd = "BPF_MAP_LOOKUP_BATCH" # alloc keys and values to the max size ct_buf_size, ct_keys, ct_values = self._alloc_keys_values(alloc_k=True, alloc_v=True) ct_out_batch = ct_cnt = ct.c_uint32(0) total = 0 while True: ct_cnt.value = ct_buf_size.value - total res = bpf_batch(self.map_fd, ct.byref(ct_out_batch) if total else None, ct.byref(ct_out_batch), ct.byref(ct_keys, ct.sizeof(self.Key) * total), ct.byref(ct_values, ct.sizeof(self.Leaf) * total), ct.byref(ct_cnt) ) errcode = ct.get_errno() total += ct_cnt.value if (res != 0 and errcode != errno.ENOENT): raise Exception("%s has failed: %s" % (bpf_cmd, os.strerror(errcode))) if res != 0: break # success if total == ct_buf_size.value: # buffer full, we can't progress break if ct_cnt.value == 0: # no progress, probably because concurrent update # puts too many elements in one bucket. break for i in range(0, total): k = ct_keys[i] v = ct_values[i] if not isinstance(k, ct.Structure): k = self.Key(k) if not isinstance(v, ct.Structure): v = self.Leaf(v) yield (k, v) def zero(self): # Even though this is not very efficient, we grab the entire list of # keys before enumerating it. This helps avoid a potential race where # the leaf assignment changes a hash table bucket that is being # enumerated by the same loop, and may lead to a hang. for k in list(self.keys()): self[k] = self.Leaf() def __iter__(self): return TableBase.Iter(self) def iter(self): return self.__iter__() def keys(self): return self.__iter__() class Iter(object): def __init__(self, table): self.table = table self.key = None def __iter__(self): return self def __next__(self): return self.next() def next(self): self.key = self.table.next(self.key) return self.key def next(self, key): next_key = self.Key() if key is None: res = lib.bpf_get_first_key(self.map_fd, ct.byref(next_key), ct.sizeof(self.Key)) else: res = lib.bpf_get_next_key(self.map_fd, ct.byref(key), ct.byref(next_key)) if res < 0: raise StopIteration() return next_key def decode_c_struct(self, tmp, buckets, bucket_fn, bucket_sort_fn, index_max=log2_index_max): f1 = self.Key._fields_[0][0] f2 = self.Key._fields_[1][0] # The above code assumes that self.Key._fields_[1][0] holds the # slot. But a padding member may have been inserted here, which # breaks the assumption and leads to chaos. # TODO: this is a quick fix. Fixing/working around in the BCC # internal library is the right thing to do. if f2 == '__pad_1' and len(self.Key._fields_) == 3: f2 = self.Key._fields_[2][0] for k, v in self.items(): bucket = getattr(k, f1) if bucket_fn: bucket = bucket_fn(bucket) vals = tmp[bucket] = tmp.get(bucket, [0] * index_max) slot = getattr(k, f2) vals[slot] = v.value buckets_lst = list(tmp.keys()) if bucket_sort_fn: buckets_lst = bucket_sort_fn(buckets_lst) for bucket in buckets_lst: buckets.append(bucket) def print_json_hist(self, val_type="value", section_header="Bucket ptr", section_print_fn=None, bucket_fn=None, bucket_sort_fn=None): """print_json_hist(val_type="value", section_header="Bucket ptr", section_print_fn=None, bucket_fn=None, bucket_sort_fn=None): Prints a table as a json histogram. The table must be stored as log2. The val_type argument is optional, and is a column header. If the histogram has a secondary key, the dictionary will be split by secondary key If section_print_fn is not None, it will be passed the bucket value to format into a string as it sees fit. If bucket_fn is not None, it will be used to produce a bucket value for the histogram keys. If bucket_sort_fn is not None, it will be used to sort the buckets before iterating them, and it is useful when there are multiple fields in the secondary key. The maximum index allowed is log2_index_max (65), which will accommodate any 64-bit integer in the histogram. """ if isinstance(self.Key(), ct.Structure): tmp = {} buckets = [] self.decode_c_struct(tmp, buckets, bucket_fn, bucket_sort_fn) for bucket in buckets: vals = tmp[bucket] if section_print_fn: section_bucket = (section_header, section_print_fn(bucket)) else: section_bucket = (section_header, bucket) print(_get_json_hist(vals, val_type, section_bucket)) else: vals = [0] * log2_index_max for k, v in self.items(): vals[k.value] = v.value print(_get_json_hist(vals, val_type)) def print_log2_hist(self, val_type="value", section_header="Bucket ptr", section_print_fn=None, bucket_fn=None, strip_leading_zero=None, bucket_sort_fn=None): """print_log2_hist(val_type="value", section_header="Bucket ptr", section_print_fn=None, bucket_fn=None, strip_leading_zero=None, bucket_sort_fn=None): Prints a table as a log2 histogram. The table must be stored as log2. The val_type argument is optional, and is a column header. If the histogram has a secondary key, multiple tables will print and section_header can be used as a header description for each. If section_print_fn is not None, it will be passed the bucket value to format into a string as it sees fit. If bucket_fn is not None, it will be used to produce a bucket value for the histogram keys. If the value of strip_leading_zero is not False, prints a histogram that is omitted leading zeros from the beginning. If bucket_sort_fn is not None, it will be used to sort the buckets before iterating them, and it is useful when there are multiple fields in the secondary key. The maximum index allowed is log2_index_max (65), which will accommodate any 64-bit integer in the histogram. """ if isinstance(self.Key(), ct.Structure): tmp = {} buckets = [] self.decode_c_struct(tmp, buckets, bucket_fn, bucket_sort_fn) for bucket in buckets: vals = tmp[bucket] if section_print_fn: print("\n%s = %s" % (section_header, section_print_fn(bucket))) else: print("\n%s = %r" % (section_header, bucket)) _print_log2_hist(vals, val_type, strip_leading_zero) else: vals = [0] * log2_index_max for k, v in self.items(): vals[k.value] = v.value _print_log2_hist(vals, val_type, strip_leading_zero) def print_linear_hist(self, val_type="value", section_header="Bucket ptr", section_print_fn=None, bucket_fn=None, strip_leading_zero=None, bucket_sort_fn=None): """print_linear_hist(val_type="value", section_header="Bucket ptr", section_print_fn=None, bucket_fn=None, strip_leading_zero=None, bucket_sort_fn=None) Prints a table as a linear histogram. This is intended to span integer ranges, eg, from 0 to 100. The val_type argument is optional, and is a column header. If the histogram has a secondary key, multiple tables will print and section_header can be used as a header description for each. If section_print_fn is not None, it will be passed the bucket value to format into a string as it sees fit. If bucket_fn is not None, it will be used to produce a bucket value for the histogram keys. If the value of strip_leading_zero is not False, prints a histogram that is omitted leading zeros from the beginning. If bucket_sort_fn is not None, it will be used to sort the buckets before iterating them, and it is useful when there are multiple fields in the secondary key. The maximum index allowed is linear_index_max (1025), which is hoped to be sufficient for integer ranges spanned. """ if isinstance(self.Key(), ct.Structure): tmp = {} buckets = [] self.decode_c_struct(tmp, buckets, bucket_fn, bucket_sort_fn, linear_index_max) for bucket in buckets: vals = tmp[bucket] if section_print_fn: print("\n%s = %s" % (section_header, section_print_fn(bucket))) else: print("\n%s = %r" % (section_header, bucket)) _print_linear_hist(vals, val_type, strip_leading_zero) else: vals = [0] * linear_index_max for k, v in self.items(): try: vals[k.value] = v.value except IndexError: # Improve error text. If the limit proves a nusiance, this # function be rewritten to avoid having one. raise IndexError(("Index in print_linear_hist() of %d " + "exceeds max of %d.") % (k.value, linear_index_max)) _print_linear_hist(vals, val_type, strip_leading_zero) class HashTable(TableBase): def __init__(self, *args, **kwargs): super(HashTable, self).__init__(*args, **kwargs) def __len__(self): i = 0 for k in self: i += 1 return i class LruHash(HashTable): def __init__(self, *args, **kwargs): super(LruHash, self).__init__(*args, **kwargs) class ArrayBase(TableBase): def __init__(self, *args, **kwargs): super(ArrayBase, self).__init__(*args, **kwargs) def _normalize_key(self, key): if isinstance(key, int): if key < 0: key = len(self) + key key = self.Key(key) if not isinstance(key, ct._SimpleCData): raise IndexError("Array index must be an integer type") if key.value >= len(self): raise IndexError("Array index out of range") return key def __len__(self): return self.max_entries def __getitem__(self, key): key = self._normalize_key(key) return super(ArrayBase, self).__getitem__(key) def __setitem__(self, key, leaf): key = self._normalize_key(key) super(ArrayBase, self).__setitem__(key, leaf) def __delitem__(self, key): key = self._normalize_key(key) super(ArrayBase, self).__delitem__(key) def clearitem(self, key): key = self._normalize_key(key) leaf = self.Leaf() res = lib.bpf_update_elem(self.map_fd, ct.byref(key), ct.byref(leaf), 0) if res < 0: raise Exception("Could not clear item") def __iter__(self): return ArrayBase.Iter(self, self.Key) class Iter(object): def __init__(self, table, keytype): self.Key = keytype self.table = table self.i = -1 def __iter__(self): return self def __next__(self): return self.next() def next(self): self.i += 1 if self.i == len(self.table): raise StopIteration() return self.Key(self.i) class Array(ArrayBase): def __init__(self, *args, **kwargs): super(Array, self).__init__(*args, **kwargs) def __delitem__(self, key): # Delete in Array type does not have an effect, so zero out instead self.clearitem(key) class ProgArray(ArrayBase): def __init__(self, *args, **kwargs): super(ProgArray, self).__init__(*args, **kwargs) def __setitem__(self, key, leaf): if isinstance(leaf, int): leaf = self.Leaf(leaf) if isinstance(leaf, self.bpf.Function): leaf = self.Leaf(leaf.fd) super(ProgArray, self).__setitem__(key, leaf) class FileDesc: def __init__(self, fd): if (fd is None) or (fd < 0): raise Exception("Invalid file descriptor") self.fd = fd def clean_up(self): if (self.fd is not None) and (self.fd >= 0): os.close(self.fd) self.fd = None def __del__(self): self.clean_up() def __enter__(self, *args, **kwargs): return self def __exit__(self, *args, **kwargs): self.clean_up() class CgroupArray(ArrayBase): def __init__(self, *args, **kwargs): super(CgroupArray, self).__init__(*args, **kwargs) def __setitem__(self, key, leaf): if isinstance(leaf, int): super(CgroupArray, self).__setitem__(key, self.Leaf(leaf)) elif isinstance(leaf, str): # TODO: Add os.O_CLOEXEC once we move to Python version >3.3 with FileDesc(os.open(leaf, os.O_RDONLY)) as f: super(CgroupArray, self).__setitem__(key, self.Leaf(f.fd)) else: raise Exception("Cgroup array key must be either FD or cgroup path") class PerfEventArray(ArrayBase): def __init__(self, *args, **kwargs): super(PerfEventArray, self).__init__(*args, **kwargs) self._open_key_fds = {} self._event_class = None def __del__(self): keys = list(self._open_key_fds.keys()) for key in keys: del self[key] def __delitem__(self, key): if key not in self._open_key_fds: return # Delete entry from the array super(PerfEventArray, self).__delitem__(key) key_id = (id(self), key) if key_id in self.bpf.perf_buffers: # The key is opened for perf ring buffer lib.perf_reader_free(self.bpf.perf_buffers[key_id]) del self.bpf.perf_buffers[key_id] del self._cbs[key] else: # The key is opened for perf event read lib.bpf_close_perf_event_fd(self._open_key_fds[key]) del self._open_key_fds[key] def event(self, data): """event(data) When perf buffers are opened to receive custom perf event, the underlying event data struct which is defined in C in the BPF program can be deduced via this function. This avoids redundant definitions in Python. """ if self._event_class == None: self._event_class = _get_event_class(self) return ct.cast(data, ct.POINTER(self._event_class)).contents def open_perf_buffer(self, callback, page_cnt=8, lost_cb=None, wakeup_events=1): """open_perf_buffers(callback) Opens a set of per-cpu ring buffer to receive custom perf event data from the bpf program. The callback will be invoked for each event submitted from the kernel, up to millions per second. Use page_cnt to change the size of the per-cpu ring buffer. The value must be a power of two and defaults to 8. """ if page_cnt & (page_cnt - 1) != 0: raise Exception("Perf buffer page_cnt must be a power of two") for i in get_online_cpus(): self._open_perf_buffer(i, callback, page_cnt, lost_cb, wakeup_events) def _open_perf_buffer(self, cpu, callback, page_cnt, lost_cb, wakeup_events): def raw_cb_(_, data, size): try: callback(cpu, data, size) except IOError as e: if e.errno == errno.EPIPE: exit() else: raise e def lost_cb_(_, lost): try: lost_cb(lost) except IOError as e: if e.errno == errno.EPIPE: exit() else: raise e fn = _RAW_CB_TYPE(raw_cb_) lost_fn = _LOST_CB_TYPE(lost_cb_) if lost_cb else ct.cast(None, _LOST_CB_TYPE) opts = bcc_perf_buffer_opts() opts.pid = -1 opts.cpu = cpu opts.wakeup_events = wakeup_events reader = lib.bpf_open_perf_buffer_opts(fn, lost_fn, None, page_cnt, ct.byref(opts)) if not reader: raise Exception("Could not open perf buffer") fd = lib.perf_reader_fd(reader) self[self.Key(cpu)] = self.Leaf(fd) self.bpf.perf_buffers[(id(self), cpu)] = reader # keep a refcnt self._cbs[cpu] = (fn, lost_fn) # The actual fd is held by the perf reader, add to track opened keys self._open_key_fds[cpu] = -1 def _open_perf_event(self, cpu, typ, config, pid=-1): fd = lib.bpf_open_perf_event(typ, config, pid, cpu) if fd < 0: raise Exception("bpf_open_perf_event failed") self[self.Key(cpu)] = self.Leaf(fd) self._open_key_fds[cpu] = fd def open_perf_event(self, typ, config, pid=-1): """open_perf_event(typ, config) Configures the table such that calls from the bpf program to table.perf_read(CUR_CPU_IDENTIFIER) will return the hardware counter denoted by event ev on the local cpu. """ for i in get_online_cpus(): self._open_perf_event(i, typ, config, pid) class PerCpuHash(HashTable): def __init__(self, *args, **kwargs): self.reducer = kwargs.pop("reducer", None) super(PerCpuHash, self).__init__(*args, **kwargs) self.sLeaf = self.Leaf self.total_cpu = len(get_possible_cpus()) # This needs to be 8 as hard coded into the linux kernel. self.alignment = ct.sizeof(self.sLeaf) % 8 if self.alignment == 0: self.Leaf = self.sLeaf * self.total_cpu else: # Currently Float, Char, un-aligned structs are not supported if self.sLeaf == ct.c_uint: self.Leaf = ct.c_uint64 * self.total_cpu elif self.sLeaf == ct.c_int: self.Leaf = ct.c_int64 * self.total_cpu else: raise IndexError("Leaf must be aligned to 8 bytes") def getvalue(self, key): result = super(PerCpuHash, self).__getitem__(key) if self.alignment == 0: ret = result else: ret = (self.sLeaf * self.total_cpu)() for i in range(0, self.total_cpu): ret[i] = result[i] return ret def __getitem__(self, key): if self.reducer: return reduce(self.reducer, self.getvalue(key)) else: return self.getvalue(key) def __setitem__(self, key, leaf): super(PerCpuHash, self).__setitem__(key, leaf) def sum(self, key): if isinstance(self.Leaf(), ct.Structure): raise IndexError("Leaf must be an integer type for default sum functions") return self.sLeaf(sum(self.getvalue(key))) def max(self, key): if isinstance(self.Leaf(), ct.Structure): raise IndexError("Leaf must be an integer type for default max functions") return self.sLeaf(max(self.getvalue(key))) def average(self, key): result = self.sum(key) return result.value / self.total_cpu class LruPerCpuHash(PerCpuHash): def __init__(self, *args, **kwargs): super(LruPerCpuHash, self).__init__(*args, **kwargs) class PerCpuArray(ArrayBase): def __init__(self, *args, **kwargs): self.reducer = kwargs.pop("reducer", None) super(PerCpuArray, self).__init__(*args, **kwargs) self.sLeaf = self.Leaf self.total_cpu = len(get_possible_cpus()) # This needs to be 8 as hard coded into the linux kernel. self.alignment = ct.sizeof(self.sLeaf) % 8 if self.alignment == 0: self.Leaf = self.sLeaf * self.total_cpu else: # Currently Float, Char, un-aligned structs are not supported if self.sLeaf == ct.c_uint: self.Leaf = ct.c_uint64 * self.total_cpu elif self.sLeaf == ct.c_int: self.Leaf = ct.c_int64 * self.total_cpu else: raise IndexError("Leaf must be aligned to 8 bytes") def getvalue(self, key): result = super(PerCpuArray, self).__getitem__(key) if self.alignment == 0: ret = result else: ret = (self.sLeaf * self.total_cpu)() for i in range(0, self.total_cpu): ret[i] = result[i] return ret def __getitem__(self, key): if (self.reducer): return reduce(self.reducer, self.getvalue(key)) else: return self.getvalue(key) def __setitem__(self, key, leaf): super(PerCpuArray, self).__setitem__(key, leaf) def __delitem__(self, key): # Delete in this type does not have an effect, so zero out instead self.clearitem(key) def sum(self, key): if isinstance(self.Leaf(), ct.Structure): raise IndexError("Leaf must be an integer type for default sum functions") return self.sLeaf(sum(self.getvalue(key))) def max(self, key): if isinstance(self.Leaf(), ct.Structure): raise IndexError("Leaf must be an integer type for default max functions") return self.sLeaf(max(self.getvalue(key))) def average(self, key): result = self.sum(key) return result.value / self.total_cpu class LpmTrie(TableBase): def __init__(self, *args, **kwargs): super(LpmTrie, self).__init__(*args, **kwargs) def __len__(self): raise NotImplementedError class StackTrace(TableBase): MAX_DEPTH = 127 BPF_F_STACK_BUILD_ID = (1<<5) BPF_STACK_BUILD_ID_EMPTY = 0 #can't get stacktrace BPF_STACK_BUILD_ID_VALID = 1 #valid build-id,ip BPF_STACK_BUILD_ID_IP = 2 #fallback to ip def __init__(self, *args, **kwargs): super(StackTrace, self).__init__(*args, **kwargs) class StackWalker(object): def __init__(self, stack, flags, resolve=None): self.stack = stack self.n = -1 self.resolve = resolve self.flags = flags def __iter__(self): return self def __next__(self): return self.next() def next(self): self.n += 1 if self.n == StackTrace.MAX_DEPTH: raise StopIteration() if self.flags & StackTrace.BPF_F_STACK_BUILD_ID: addr = self.stack.trace[self.n] if addr.status == StackTrace.BPF_STACK_BUILD_ID_IP or \ addr.status == StackTrace.BPF_STACK_BUILD_ID_EMPTY: raise StopIteration() else: addr = self.stack.ip[self.n] if addr == 0 : raise StopIteration() return self.resolve(addr) if self.resolve else addr def walk(self, stack_id, resolve=None): return StackTrace.StackWalker(self[self.Key(stack_id)], self.flags, resolve) def __len__(self): i = 0 for k in self: i += 1 return i def clear(self): pass class DevMap(ArrayBase): def __init__(self, *args, **kwargs): super(DevMap, self).__init__(*args, **kwargs) class CpuMap(ArrayBase): def __init__(self, *args, **kwargs): super(CpuMap, self).__init__(*args, **kwargs) class XskMap(ArrayBase): def __init__(self, *args, **kwargs): super(XskMap, self).__init__(*args, **kwargs) class MapInMapArray(ArrayBase): def __init__(self, *args, **kwargs): super(MapInMapArray, self).__init__(*args, **kwargs) class MapInMapHash(HashTable): def __init__(self, *args, **kwargs): super(MapInMapHash, self).__init__(*args, **kwargs) class RingBuf(TableBase): def __init__(self, *args, **kwargs): super(RingBuf, self).__init__(*args, **kwargs) self._ringbuf = None self._event_class = None def __delitem(self, key): pass def __del__(self): pass def __len__(self): return 0 def event(self, data): """event(data) When ring buffers are opened to receive custom event, the underlying event data struct which is defined in C in the BPF program can be deduced via this function. This avoids redundant definitions in Python. """ if self._event_class == None: self._event_class = _get_event_class(self) return ct.cast(data, ct.POINTER(self._event_class)).contents def open_ring_buffer(self, callback, ctx=None): """open_ring_buffer(callback) Opens a ring buffer to receive custom event data from the bpf program. The callback will be invoked for each event submitted from the kernel, up to millions per second. """ def ringbuf_cb_(ctx, data, size): try: ret = callback(ctx, data, size) # Callback for ringbufs should _always_ return an integer. # If the function the user registers does not, # simply fall back to returning 0. try: ret = int(ret) except: ret = 0 except IOError as e: if e.errno == errno.EPIPE: exit() else: raise e return ret fn = _RINGBUF_CB_TYPE(ringbuf_cb_) self.bpf._open_ring_buffer(self.map_fd, fn, ctx) # keep a refcnt self._cbs[0] = fn class QueueStack: # Flag for map.push BPF_EXIST = 2 def __init__(self, bpf, map_id, map_fd, leaftype): self.bpf = bpf self.map_id = map_id self.map_fd = map_fd self.Leaf = leaftype self.ttype = lib.bpf_table_type_id(self.bpf.module, self.map_id) self.flags = lib.bpf_table_flags_id(self.bpf.module, self.map_id) self.max_entries = int(lib.bpf_table_max_entries_id(self.bpf.module, self.map_id)) def leaf_sprintf(self, leaf): buf = ct.create_string_buffer(ct.sizeof(self.Leaf) * 8) res = lib.bpf_table_leaf_snprintf(self.bpf.module, self.map_id, buf, len(buf), ct.byref(leaf)) if res < 0: raise Exception("Could not printf leaf") return buf.value def leaf_scanf(self, leaf_str): leaf = self.Leaf() res = lib.bpf_table_leaf_sscanf(self.bpf.module, self.map_id, leaf_str, ct.byref(leaf)) if res < 0: raise Exception("Could not scanf leaf") return leaf def push(self, leaf, flags=0): res = lib.bpf_update_elem(self.map_fd, None, ct.byref(leaf), flags) if res < 0: errstr = os.strerror(ct.get_errno()) raise Exception("Could not push to table: %s" % errstr) def pop(self): leaf = self.Leaf() res = lib.bpf_lookup_and_delete(self.map_fd, None, ct.byref(leaf)) if res < 0: raise KeyError("Could not pop from table") return leaf def peek(self): leaf = self.Leaf() res = lib.bpf_lookup_elem(self.map_fd, None, ct.byref(leaf)) if res < 0: raise KeyError("Could not peek table") return leaf def itervalues(self): # to avoid infinite loop, set maximum pops to max_entries cnt = self.max_entries while cnt: try: yield(self.pop()) cnt -= 1 except KeyError: return def values(self): return [value for value in self.itervalues()]